In
mathematics, the Milnor conjecture was a proposal by of a description of the
Milnor K-theory
In mathematics, Milnor K-theory is an algebraic invariant (denoted K_*(F) for a field F) defined by as an attempt to study higher algebraic K-theory in the special case of fields. It was hoped this would help illuminate the structure for algebr ...
(mod 2) of a general
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
''F'' with
characteristic different from 2, by means of the
Galois (or equivalently
étale) cohomology of ''F'' with coefficients in Z/2Z. It was proved by .
Statement
Let ''F'' be a field of characteristic different from 2. Then there is an
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
:
for all ''n'' ≥ 0, where ''K
M'' denotes the
Milnor ring
In mathematics, Milnor K-theory is an algebraic invariant (denoted K_*(F) for a field F) defined by as an attempt to study higher algebraic K-theory in the special case of fields. It was hoped this would help illuminate the structure for algebr ...
.
About the proof
The proof of this theorem by
Vladimir Voevodsky
Vladimir Alexandrovich Voevodsky (, russian: Влади́мир Алекса́ндрович Воево́дский; 4 June 1966 – 30 September 2017) was a Russian-American mathematician. His work in developing a homotopy theory for algebraic var ...
uses several ideas developed by Voevodsky,
Alexander Merkurjev
Aleksandr Sergeyevich Merkurjev (russian: Алекса́ндр Сергее́вич Мерку́рьев, born September 25, 1955) is a Russian-American mathematician, who has made major contributions to the field of algebra. Currently Merkurjev ...
,
Andrei Suslin
Andrei Suslin (russian: Андре́й Алекса́ндрович Су́слин, sometimes transliterated Souslin) was a Russian mathematician who contributed to algebraic K-theory and its connections with algebraic geometry. He was a Truste ...
,
Markus Rost
Markus Rost is a German mathematician who works at the intersection of topology and algebra. He was an invited speaker at the International Congress of Mathematicians in 2002 in Beijing, China. He is a professor at the University of Bielefeld.
...
,
Fabien Morel
Fabien Morel (born 22 January 1965, in Reims) is a French algebraic geometer and key developer of A¹ homotopy theory with Vladimir Voevodsky. Among his accomplishments is the proof of the Friedlander conjecture, and the proof of the complex ca ...
,
Eric Friedlander
Eric Mark Friedlander (born January 7, 1944 in Santurce, Puerto Rico) is an American mathematician who is working in algebraic topology, algebraic geometry, algebraic K-theory and representation theory.
Friedlander graduated from Swarthmore ...
, and others, including the newly minted theory of
motivic cohomology
Motivic cohomology is an invariant of algebraic varieties and of more general schemes. It is a type of cohomology related to motives and includes the Chow ring of algebraic cycles as a special case. Some of the deepest problems in algebraic geome ...
(a kind of substitute for
singular cohomology
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewe ...
for
algebraic varieties
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex number
...
) and the
motivic Steenrod algebra
In music, a motif IPA: ( /moʊˈtiːf/) (also motive) is a short musical phrase, a salient recurring figure, musical fragment or succession of notes that has some special importance in or is characteristic of a composition: "The motiv ...
.
Generalizations
The analogue of this result for
primes
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
other than 2 was known as the
Bloch–Kato conjecture. Work of Voevodsky and
Markus Rost
Markus Rost is a German mathematician who works at the intersection of topology and algebra. He was an invited speaker at the International Congress of Mathematicians in 2002 in Beijing, China. He is a professor at the University of Bielefeld.
...
yielded a complete proof of this conjecture in 2009; the result is now called the
norm residue isomorphism theorem
In mathematics, the norm residue isomorphism theorem is a long-sought result relating Milnor ''K''-theory and Galois cohomology. The result has a relatively elementary formulation and at the same time represents the key juncture in the proofs o ...
.
References
*
*
*
*
*
Further reading
* {{citation , last=Kahn , first=Bruno , chapter=La conjecture de Milnor (d'après V. Voevodsky) , language=French , editor1-last=Friedlander , editor1-first=Eric M. , editor2-last=Grayson , editor2-first=D.R. , title=Handbook of ''K''-theory , volume=2 , pages=1105–1149 , publisher=
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing.
Originally founded in 1842 ...
, year=2005 , isbn=3-540-23019-X , zbl=1101.19001
K-theory
Conjectures that have been proved
Theorems in algebraic topology