
In
biochemistry
Biochemistry, or biological chemistry, is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology, a ...
, metabolic control analysis (MCA) is a mathematical framework for describing
metabolic
Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the ...
,
signaling, and
genetic pathways. MCA quantifies how variables, such as
flux
Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications in physics. For transport phe ...
es and
species
A species () is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of Taxonomy (biology), ...
concentrations, depend on
network parameters.
In particular, it is able to describe how network-dependent properties,
called control
coefficient
In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
s, depend on
local properties called
elasticities or
elasticity coefficient
In chemistry, the Reaction rate, rate of a chemical reaction is influenced by many different factors, such as temperature, pH, reactant, the concentration of Product (chemistry), products, and other effectors. The degree to which these factors c ...
s.
MCA was originally developed to describe the control in metabolic pathways
but was subsequently extended to describe signaling and
genetic networks. MCA has sometimes also been referred to as ''Metabolic Control Theory,'' but this terminology was rather strongly opposed by
Henrik Kacser, one of the founders.
More recent work has shown that MCA can be
mapped directly on to classical
control theory
Control theory is a field of control engineering and applied mathematics that deals with the control system, control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the applic ...
and are as such equivalent.
Biochemical systems theory (BST) is a similar
formalism, though with rather different objectives. Both are evolutions of an earlier theoretical analysis by Joseph Higgins.
Chemical reaction network theory is another theoretical framework that has overlap with both MCA and BST but is considerably more mathematically formal in its approach. Its emphasis is primarily on dynamic stability criteria and related theorems associated with
mass-action networks. In more recent years the field has also developed a sensitivity analysis which is similar if not identical to MCA and BST.
Control coefficients
A
control coefficient
measures the relative
steady state
In systems theory, a system or a process is in a steady state if the variables (called state variables) which define the behavior of the system or the process are unchanging in time. In continuous time, this means that for those properties ''p' ...
change in a system variable, e.g. pathway flux (J) or metabolite concentration (S), in response to a relative change in a
parameter
A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
, e.g.
enzyme activity
Enzyme assays are laboratory methods for measuring enzyme, enzymatic activity. They are vital for the study of enzyme kinetics and enzyme inhibitor, enzyme inhibition.
Enzyme units
The quantity or concentration of an enzyme can be expressed in Mo ...
or the steady-state rate (
) of step
. The two main control coefficients are the flux and concentration control coefficients. Flux control coefficients are defined by
:
and concentration control coefficients by
:

.
Summation theorems
The flux control
summation
In mathematics, summation is the addition of a sequence of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, pol ...
theorem was discovered independently by the Kacser/Burns group
and the Heinrich/Rapoport group
in the early 1970s and late 1960s. The flux control summation theorem
implies that metabolic fluxes are systemic properties and that their control is shared by all
reactions in the system. When a single reaction changes its control of the flux this is compensated by changes in the control of the same flux by all other reactions.
:
:
Elasticity coefficients
The
elasticity coefficient
In chemistry, the Reaction rate, rate of a chemical reaction is influenced by many different factors, such as temperature, pH, reactant, the concentration of Product (chemistry), products, and other effectors. The degree to which these factors c ...
measures the local response of an enzyme or other chemical reaction to changes in its environment. Such changes include factors such as substrates, products, or effector concentrations. For further information, please refer to the dedicated page at
elasticity coefficient
In chemistry, the Reaction rate, rate of a chemical reaction is influenced by many different factors, such as temperature, pH, reactant, the concentration of Product (chemistry), products, and other effectors. The degree to which these factors c ...
s.
.
Connectivity theorems
The
connectivity theorems
are specific relationships between elasticities and control coefficients. They are useful because they highlight the close relationship between the
kinetic properties of individual reactions and the system properties of a pathway. Two basic sets of theorems exists, one for flux and another for concentrations. The concentration connectivity theorems are divided again depending on whether the system species
is different from the local species
.
:
:
:
Response Coefficient
Kacser and Burns
introduced an additional coefficient that described how a biochemical pathway would respond the external environment. They termed this coefficient the response coefficient and designated it using the symbol R. The response coefficient is an important metric because it can be used to assess how much a nutrient or perhaps more important, how a drug can influence a pathway. This coefficient is therefore highly relevant to the pharmaceutical industry.
The response coefficient is related to the core of metabolic control analysis via the response coefficient theorem, which is stated as follows:
where
is a chosen observable such as a flux or metabolite concentration,
is the step that the external factor targets,
is the control coefficient of the target steps, and
is the elasticity of the target step with respect to the external factor
.
The key observation of this theorem is that an external factor such as a therapeutic drug, acts on the organism's phenotype via two influences: 1) How well the drug can affect the target itself through effective binding of the drug to the target protein and its effect on the protein activity. This effectiveness is described by the elasticity
and 2) How well do modifications of the target influence the phenotype by transmission of the perturbation to the rest of the network. This is indicated by the control coefficient
.
A drug action, or any external factor, is most effective when both these factors are strong. For example, a drug might be very effective at changing the activity of its target protein, however if that perturbation in protein activity is unable to be transmitted to the final phenotype then the effectiveness of the drug is greatly diminished.
If a drug or external factor,
, targets multiple sites of action, for example
sites, then the overall response in a phenotypic factor
, is the sum of the individual responses:
Control equations
It is possible to combine the summation with the connectivity theorems to obtain
closed expressions that relate the control coefficients to the elasticity coefficients. For example, consider the simplest
non-trivial
In mathematics, the adjective trivial is often used to refer to a claim or a case which can be readily obtained from context, or a particularly simple object possessing a given structure (e.g., group, topological space). The noun triviality usual ...
pathway:
:
We assume that
and
are
fixed boundary species so that the pathway can reach a steady state. Let the first step have a rate
and the second step
. Focusing on the flux control coefficients, we can write one summation and one connectivity theorem for this simple pathway:
:
:
Using these two equations we can solve for the flux control coefficients to yield
:
:
Using these equations we can look at some simple extreme behaviors. For example, let us assume that the first step is completely insensitive to its product (i.e. not reacting with it), S, then
. In this case, the control coefficients reduce to
:
:
That is all the control (or sensitivity) is on the first step. This situation represents the classic
rate-limiting step that is frequently mentioned in textbooks. The flux through the pathway is completely dependent on the first step. Under these conditions, no other step in the pathway can affect the flux. The effect is however dependent on the complete insensitivity of the first step to its product. Such a situation is likely to be rare in real pathways. In fact the classic rate limiting step has almost never been observed experimentally. Instead, a range of limitingness is observed, with some steps having more limitingness (control) than others.
We can also derive the concentration control coefficients for the simple two step pathway:
:
:
Three step pathway
Consider the simple three step pathway:
:
where
and
are fixed boundary species, the control equations for this pathway can be derived in a similar manner to the simple two step pathway although it is somewhat more tedious.
:
:
:
where D the denominator is given by
:
Note that every term in the numerator appears in the denominator, this ensures that the flux control coefficient summation theorem is satisfied.
Likewise the concentration control coefficients can also be derived, for
:
:
:
And for
:
:
:
Note that the denominators remain the same as before and behave as a
normalizing factor.
Derivation using perturbations
Control equations can also be derived by considering the effect of perturbations on the system. Consider that reaction rates
and
are determined by two enzymes
and
respectively. Changing either enzyme will result in a change to the steady state level of
and the steady state reaction rates
. Consider a small change in
of magnitude
. This will have a number of effects, it will increase
which in turn will increase
which in turn will increase
. Eventually the system will settle to a new steady state. We can describe these changes by focusing on the change in
and
. The change in
, which we designate
, came about as a result of the change
. Because we are only considering small changes we can express the change
in terms of
using the relation
:
where the derivative
measures how responsive
is to changes in
. The derivative can be computed if we know the rate law for
. For example, if we assume that the rate law is
then the derivative is
. We can also use a similar strategy to compute the change in
as a result of the change
. This time the change in
is a result of two changes, the change in
itself and the change in
. We can express these changes by summing the two individual contributions:
:
We have two equations, one describing the change in
and the other in
. Because we allowed the system to settle to a new steady state we can also state that the change in reaction rates must be the same (otherwise it wouldn't be at steady state). That is we can assert that
. With this in mind we equate the two equations and write
:
Solving for the ratio
we obtain:
:
In the limit, as we make the change
smaller and smaller, the left-hand side converges to the derivative
:
:
We can go one step further and scale the derivatives to eliminate units. Multiplying both sides by
and dividing both sides by
yields the scaled derivatives:
:
The scaled derivatives on the right-hand side are the elasticities,
and the scaled left-hand term is the scaled sensitivity coefficient or concentration control coefficient,
:
We can simplify this expression further. The reaction rate
is usually a linear function of
. For example, in the Briggs–Haldane equation, the reaction rate is given by
. Differentiating this rate law with respect to
and scaling yields
.
Using this result gives:
:
A similar analysis can be done where
is perturbed. In this case we obtain the sensitivity of
with respect to
:
:
The above expressions measure how much enzymes
and
control the steady state concentration of intermediate
. We can also consider how the steady state reaction rates
and
are affected by perturbations in
and
. This is often of importance to metabolic engineers who are interested in increasing rates of production. At steady state the reaction rates are often called the fluxes and abbreviated to
and
. For a linear pathway such as this example, both fluxes are equal at steady-state so that the flux through the pathway is simply referred to as
. Expressing the change in flux as a result of a perturbation in
and taking the limit as before we obtain
:
The above expressions tell us how much enzymes
and
control the steady state flux. The key point here is that changes in enzyme concentration, or equivalently the enzyme activity, must be brought about by an external action.
Derivation using the systems equation
The control equations can also be derived in a more rigorous fashion using the
systems equation:
where
is the
stoichiometry matrix,
is a vector of chemical species, and
is a vector of parameters (or inputs) that can influence the system. In metabolic control analysis the key parameters are the enzyme concentrations. This approach was popularized by Heinrich, Rapoport, and Rapoport and Reder and Mazat. A detailed discussion of this approach can be found in Heinrich & Schuster and Hofmeyr.
Properties of a linear pathway
A linear biochemical pathway is a chain of enzyme-catalyzed reaction steps. The figure below shows a three step pathway, with intermediates,
and
. In order to sustain a steady-state, the boundary species
and
are fixed.

At steady-state the rate of reaction is the same at each step. This means there is an overall flux from X_o to X_1.
Linear pathways possess some well-known properties:
# Flux control is biased towards the first few steps of the pathway. Flux control shifts more to the first step as the equilibrium constants become large.
# Flux control is small at reactions close to equilibrium.
# Assuming reversibly, flux control at a given step is proportional to the product of the equilibrium constants. For example, flux control at the second step in a three step pathway is proportional to the product of the second and third equilibrium constants.
In all cases, a rationale for these behaviors is given in terms of how elasticities transmit changes through a pathway.
Metabolic control analysis software
There are a number of software tools that can directly compute elasticities and control coefficients:
*
COPASI (GUI)
*
PySCeS (Python)
*
SBW (GUI)
*
libroadrunner (Python)
*
VCell
Relationship to Classical Control Theory
Classical
Control theory
Control theory is a field of control engineering and applied mathematics that deals with the control system, control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the applic ...
is a field of mathematics that deals with the control of dynamical systems in engineered processes and machines. In 2004 Brian Ingalls published a paper that showed that classical control theory and metabolic control analysis were identical. The only difference was that metabolic control analysis was confined to zero frequency responses when cast in the frequency domain whereas classical control theory imposes no such restriction. The other significant difference is that classical control theory
has no notion of stoichiometry and conservation of mass which makes it more cumbersome to use but also means it fails to recognize the structural properties inherent in stoichiometric networks which provide useful biological insights.
See also
*
Branched pathways
*
Biochemical systems theory
*
Control coefficient (biochemistry)
*
Flux (metabolism)
In biochemistry, metabolic flux (often referred to as flux) is the rate of turnover of molecules through a metabolic pathway. Flux is regulated by the enzymes involved in a pathway. Within cells, regulation of flux is vital for all metabolic pa ...
*
Moiety conservation
Moiety conservation is the conservation of a subgroup in a chemical species, which is cyclically transferred from one molecule to another. In biochemistry, moiety conservation can have profound effects on the system's dynamics.
Moiety-conserved c ...
*
Rate-limiting step (biochemistry)
References
External links
The Metabolic Control Analysis Web
{{DEFAULTSORT:Metabolic Control Analysis
Biochemistry methods
Metabolism
Mathematical and theoretical biology
Systems biology