Maturation-promoting factor (abbreviated MPF, also called mitosis-promoting factor or M-Phase-promoting factor) is the
cyclin–Cdk complex that was discovered first in frog eggs.
It stimulates the
mitotic and
meiotic phases of the
cell cycle
The cell cycle, or cell-division cycle, is the sequential series of events that take place in a cell (biology), cell that causes it to divide into two daughter cells. These events include the growth of the cell, duplication of its DNA (DNA re ...
. MPF promotes the entrance into mitosis (the M phase) from the
G2 phase by phosphorylating multiple proteins needed during mitosis. MPF is activated at the end of G
2 by a
phosphatase, which removes an inhibitory phosphate group added earlier.
The MPF is also called the M phase kinase because of its ability to phosphorylate target proteins at a specific point in the cell cycle and thus control their ability to function.
Discovery
In 1971, two independent teams of researchers (
Yoshio Masui and
Clement Markert, as well as
L. Dennis Smith and Robert Ecker) found that frog
oocytes arrested in G
2 could be induced to enter M phase by microinjection of cytoplasm from oocytes that had been hormonally stimulated with progesterone.
Because the entry of oocytes into meiosis is frequently referred to as oocyte maturation, this cytoplasmic factor was called maturation promoting factor (MPF). Further studies showed, however, that the activity of MPF is not restricted to the entry of oocytes into meiosis. To the contrary, MPF is also present in somatic cells, where it induces entry into M phase of the mitotic cycle.
Evidence that a diffusible factor regulates the entry into mitosis had been previously obtained in 1966 using the slime mold ''Physarum polycephalum'' in which the nuclei of the multi-nucleate plasmodial form undergo synchronous mitoses. Fusing plasmodia whose cell cycles were out of phase with each other led to a synchronous mitosis in the next mitotic cycle. This result demonstrated that mitotic entry was controlled by a diffusible cytoplasmic factor and not by a "nuclear clock."
Structure
MPF is composed of two subunits:
*
Cyclin-dependent kinase 1 (CDK1), the cyclin-dependent kinase subunit. It uses
ATP to phosphorylate specific
serine and
threonine residues of target proteins.
*
Cyclin, a regulatory subunit. The cyclins are necessary for the kinase subunit to function with the appropriate substrate. The mitotic cyclins can be grouped as cyclins A & B. These cyclins have a nine residue sequence in the N-terminal region called the “destruction box”, which can be recognized by the ubiquitin ligase enzyme which destroys the cyclins when appropriate.
Role in the cell cycle
During G
1 and S phase, the CDK1 subunit of MPF is inactive due to an inhibitory enzyme, Wee1. Wee1 phosphorylates the Tyr-15 residue of CDK1, rendering MPF inactive. During the transition of G
2 to M phase, cdk1 is de-phosphorylated by CDC25. The CDK1 subunit is now free and can bind to cyclin B, activate MPF, and make the cell enter mitosis. There is also a
positive feedback
Positive feedback (exacerbating feedback, self-reinforcing feedback) is a process that occurs in a feedback loop where the outcome of a process reinforces the inciting process to build momentum. As such, these forces can exacerbate the effects ...
loop that inactivates wee1.
Activation
MPF must be activated in order for the cell to transition from G
2 to M phase. There are three amino acid residues responsible for this G
2 to M
phase transition
In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic Sta ...
. The Threonine-161 (Thr-161) on CDK1 must be phosphorylated by a
CDK-activating kinase (CAK). CAK only phosphorylates Thr-161 when cyclin B is attached to CDK1.
In addition, two other residues on the CDK1 subunit must be activated by dephosphorylation. CDC25 removes a phosphate from residues Threonine-14 (Thr-14) and Tyrosine-15 (Tyr-15) and adds a hydroxyl group. Cyclin B/CDK1 activates CDC25 resulting in a positive feedback loop.
Overview of functions
* Triggers the formation of mitotic spindle through microtubule instability.
* Promotes mitosis i.e. chromatin condensation through phosphorylation of condensins.
* The three lamins present in the nuclear lamina, lamin A, B & C, are phosphorylated by MPF at serine amino residues. This leads to depolymerisation of the nuclear lamina & breakdown of nuclear envelope into small vesicles.
* Causes phosphorylation of GM130, which leads to the fragmentation of the Golgi and the ER.
Targets
The following are affected by MPF.
*
condensins, which enable
chromatin
Chromatin is a complex of DNA and protein found in eukaryote, eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important r ...
condensation (see
prophase)
* various
microtubule
Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nanometer, nm and have an inner diameter bet ...
-associated proteins involved in
mitotic spindle formation
*
lamins, interaction contributing to degradation of the
nuclear envelope
* Histones, H
1 and H
3
* Golgi matrix, to cause fragmentation
Inhibition of myosin
MPF phosphorylates inhibitory sites on
myosin
Myosins () are a Protein family, family of motor proteins (though most often protein complexes) best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are adenosine triphosphate, ATP- ...
early in mitosis. This prevents
cytokinesis. When MPF activity falls at anaphase, the inhibitory sites are dephosphorylated and cytokinesis proceeds.
Disassembly by anaphase-promoting complex
MPF is disassembled when
anaphase-promoting complex
Anaphase-promoting complex (also called the cyclosome or APC/C) is an E3 ubiquitin ligase that marks target cell cycle proteins for degradation by the 26S proteasome. The APC/C is a large complex of 11–13 subunit proteins, including a cullin ...
(APC) polyubiquitinates cyclin B, marking it for degradation in a
negative feedback
Negative feedback (or balancing feedback) occurs when some function (Mathematics), function of the output of a system, process, or mechanism is feedback, fed back in a manner that tends to reduce the fluctuations in the output, whether caused ...
loop. In intact cells, cyclin degradation begins shortly after the onset of anaphase (late anaphase), the period of mitosis when sister chromatids are separated and pulled toward opposite spindle poles. As the concentration of Cyclin B/CDK1 increases, the heterodimer promotes APC to polyubiquitinate Cyclin B/CDK1.
References
{{Cell cycle proteins
Protein complexes
Cell cycle