Mariner 10
   HOME

TheInfoList



OR:

''Mariner 10'' was an American
robotic Robotics is the interdisciplinary study and practice of the design, construction, operation, and use of robots. Within mechanical engineering, robotics is the design and construction of the physical structures of robots, while in computer s ...
space probe Uncrewed spacecraft or robotic spacecraft are spacecraft without people on board. Uncrewed spacecraft may have varying levels of autonomy from human input, such as remote control, or remote guidance. They may also be autonomous, in which th ...
launched by
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
on 3 November 1973, to fly by the planets Mercury and
Venus Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" planet for having almost the same size and mass, and the closest orbit to Earth's. While both are rocky planets, Venus has an atmosphere much thicker ...
. It was the first spacecraft to perform flybys of multiple planets. ''Mariner 10'' was launched approximately two years after ''
Mariner 9 Mariner 9 (Mariner Mars '71 / Mariner-I) was a robotic spacecraft that contributed greatly to the exploration of Mars and was part of the NASA Mariner program. Mariner 9 was launched toward Mars on May 30, 1971, from Spaceport Florida Launch Comp ...
'' and was the last spacecraft in the
Mariner program The Mariner program was conducted by the American space agency NASA to explore other planets. Between 1962 and late 1973, NASA's Jet Propulsion Laboratory (JPL) designed and built 10 robotic interplanetary probes named Mariner to explore the in ...
. (Mariner 11 and Mariner 12 were allocated to the
Voyager program The Voyager program is an American scientific program that employs two interstellar probes, ''Voyager 1'' and ''Voyager 2''. They were launched in 1977 to take advantage of a favorable planetary alignment to explore the two gas giants Jupiter ...
and redesignated ''
Voyager 1 ''Voyager 1'' is a space probe launched by NASA on September 5, 1977, as part of the Voyager program to study the outer Solar System and the interstellar medium, interstellar space beyond the Sun's heliosphere. It was launched 16 days afte ...
'' and ''
Voyager 2 ''Voyager 2'' is a space probe launched by NASA on August 20, 1977, as a part of the Voyager program. It was launched on a trajectory towards the gas giants (Jupiter and Saturn) and enabled further encounters with the ice giants (Uranus and ...
''.) The mission objectives were to measure Mercury's environment, atmosphere, surface, and body characteristics and to make similar investigations of Venus. Secondary objectives were to perform experiments in the interplanetary medium and to obtain experience with a dual-planet
gravity assist A gravity assist, gravity assist maneuver, swing-by, or generally a gravitational slingshot in orbital mechanics, is a type of spaceflight flyby (spaceflight), flyby which makes use of the relative movement (e.g. orbit around the Sun) and gra ...
mission. ''Mariner 10''s science team was led by Bruce C. Murray at the
Jet Propulsion Laboratory The Jet Propulsion Laboratory (JPL) is a Federally funded research and development centers, federally funded research and development center (FFRDC) in La Cañada Flintridge, California, Crescenta Valley, United States. Founded in 1936 by Cali ...
.


Design and trajectory

''Mariner 10'' was the first mission to use a
gravity assist A gravity assist, gravity assist maneuver, swing-by, or generally a gravitational slingshot in orbital mechanics, is a type of spaceflight flyby (spaceflight), flyby which makes use of the relative movement (e.g. orbit around the Sun) and gra ...
from one planet (in this case, Venus) to reach another planet. It used Venus to bend its flight path and bring its
perihelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides (also called apse line, or major axis of the orbit) is the line connecting the two extreme values. Apsides perta ...
down to the level of Mercury's orbit. This maneuver, inspired by the
orbital mechanics Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal ...
calculations of the Italian scientist
Giuseppe Colombo Giuseppe "Bepi" Colombo (2 October 1920 in Padua – 20 February 1984 in Padua) was an Italians, Italian scientist, mathematician and engineer at the University of Padua, Italy. Mercury Colombo studied the planet Mercury (planet), Mercury, and ...
, put the spacecraft into an orbit that repeatedly brought it back to Mercury. ''Mariner 10'' used the solar
radiation pressure Radiation pressure (also known as light pressure) is mechanical pressure exerted upon a surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of ...
on its
solar panel A solar panel is a device that converts sunlight into electricity by using photovoltaic (PV) cells. PV cells are made of materials that produce excited electrons when exposed to light. These electrons flow through a circuit and produce direct ...
s and its high-gain antenna as a means of attitude control during flight, the first spacecraft to use active solar pressure control. The components on ''Mariner 10'' can be categorized into four groups based on their common function. The solar panels, power subsystem, attitude control subsystem, and the computer kept the spacecraft operating properly during the flight. The navigational system, including the hydrazine rocket, would keep ''Mariner 10'' on track to Venus and Mercury. Several scientific instruments would collect data at the two planets. Finally, the antennas would transmit this data to the
Deep Space Network The NASA Deep Space Network (DSN) is a worldwide Telecommunications network, network of spacecraft communication ground segment facilities, located in the United States (California), Spain (Madrid), and Australia (Canberra), that supports NASA' ...
back on Earth, as well as receive commands from Mission Control. ''Mariner 10''s various components and scientific instruments were attached to a central hub, which was roughly the shape of an octagonal prism. The hub stored the spacecraft's internal electronics. The Mariner 10 spacecraft was manufactured by Boeing. NASA set a strict limit of US$98 million for Mariner 10's total cost, which marked the first time the agency subjected a mission to an inflexible budget constraint. No overruns would be tolerated, so mission planners carefully considered cost efficiency when designing the spacecraft's instruments. Cost control was primarily accomplished by executing contract work closer to the launch date than was recommended by normal mission schedules, as reducing the length of available work time increased cost efficiency. Despite the rushed schedule, very few deadlines were missed. The mission ended up about US$1 million under budget. Attitude control is needed to keep a spacecraft's instruments and antennas aimed in the correct direction. During course correction maneuvers, the spacecraft may need to rotate so that its rocket engine faces the proper direction before being fired. ''Mariner 10'' determined its attitude using two optical sensors, one pointed at the Sun, and the other at a bright star, usually
Canopus Canopus is the brightest star in the southern constellation of Carina (constellation), Carina and the list of brightest stars, second-brightest star in the night sky. It is also Bayer designation, designated α Carinae, which is Rom ...
; additionally, the probe's three
gyroscopes A gyroscope (from Ancient Greek γῦρος ''gŷros'', "round" and σκοπέω ''skopéō'', "to look") is a device used for measuring or maintaining Orientation (geometry), orientation and angular velocity. It is a spinning wheel or disc in ...
provided a second option for calculating the attitude. Nitrogen gas thrusters were used to adjust ''Mariner 10''s orientation along three axes. The spacecraft's electronics were intricate and complex: it contained over 32,000 pieces of circuitry, of which resistors, capacitors, diodes, microcircuits, and transistors were the most common devices. Commands for the instruments could be stored on ''Mariner 10''s computer, but were limited to 512 words. The rest had to be broadcast by the Mission Sequence Working Group from Earth. Supplying the spacecraft components with power required modifying the electrical output of the solar panels. The power subsystem used two redundant sets of circuitry, each containing a booster regulator and an
inverter A power inverter, inverter, or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the op ...
, to convert the panels' DC output to AC and alter the voltage to the necessary level. The subsystem could store up to 20
ampere hour An ampere-hour or amp-hour (symbol: A⋅h or A h; often simplified as Ah) is a unit of electric charge, having dimensions of electric current multiplied by time, equal to the charge transferred by a steady current of one ampere flowing for ...
s of electricity on a 39-volt
nickel–cadmium battery The nickel–cadmium battery (Ni–Cd battery or NiCad battery) is a type of rechargeable battery using nickel oxide hydroxide and metallic cadmium as electrodes. The abbreviation ''Ni–Cd'' is derived from the chemical symbols of nickel (Ni) an ...
. The flyby past Mercury posed major technical challenges for scientists to overcome. Due to Mercury's proximity to the Sun, ''Mariner 10'' would have to endure 4.5 times more
solar radiation Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible light perceptible to the human eye as well as invisible infrared (typically p ...
than when it departed Earth; compared to previous Mariner missions, spacecraft parts needed extra shielding against the heat. Thermal blankets and a sunshade were installed on the main body. After evaluating different choices for the sunshade cloth material, mission planners chose beta cloth, a combination of aluminized
Kapton file:Kaptonpads.jpg, Kapton insulating pads for mounting electronic parts on a heat sink Kapton is a polyimide film used in flexible printed circuits (flexible electronics) and space blankets, which are used on spacecraft, satellites, and variou ...
and glass-fiber sheets treated with
Teflon Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene, and has numerous applications because it is chemically inert. The commonly known brand name of PTFE-based composition is Teflon by Chemours, a spin-off from ...
. However, solar shielding was unfeasible for some of ''Mariner 10''s other components. ''Mariner 10''s two solar panels needed to be kept under . Covering the panels would defeat their purpose of producing electricity. The solution was to add an adjustable tilt to the panels, so the angle at which they faced the sun could be changed. Engineers considered folding the panels toward each other, making a V-shape with the main body, but tests found this approach had the potential to overheat the rest of the spacecraft. The alternative chosen was to mount the solar panels in a line and tilt them along that axis, which had the added benefit of increasing the efficiency of the spacecraft's nitrogen jet thrusters, which could now be placed on the panel tips. The panels could be rotated a maximum of 76°. Additionally, ''Mariner 10''s hydrazine rocket nozzle had to face the Sun to function properly, but scientists rejected covering the nozzle with a thermal door as an undependable solution. Instead, a special paint was applied to exposed parts on the rocket so as to reduce heat flow from the nozzle to the delicate instruments on the spacecraft. Accurately performing the gravity assist at Venus posed another hurdle. If ''Mariner 10'' was to maintain a course to Mercury, its trajectory could deviate no more than from a critical point in the vicinity of Venus. To ensure that the necessary course corrections could be made, mission planners tripled the amount of
hydrazine Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly hazardous unless handled in solution as, for example, hydraz ...
fuel Mariner 10 would carry, and also equipped the spacecraft with more nitrogen gas for the thrusters than the previous Mariner mission had held. These upgrades proved crucial in enabling the second and third Mercury flybys. The mission still lacked the ultimate safeguard: a sister spacecraft. It was common for probes to be launched in pairs, with complete redundancy to guard against the failure of one or the other. The budget constraint ruled this option out. Even though mission planners stayed sufficiently under budget to divert some funding for constructing a backup spacecraft, the budget did not permit both to be launched at the same time. In the event that Mariner 10 failed, NASA would only allow the backup to be launched if the fatal error was diagnosed and fixed; this would have to be completed in the two and a half weeks between the scheduled launch on 3 November 1973 and the last possible launch date of 21 November 1973. The unused backup was sent to the Smithsonian museum for display.


Instruments

''Mariner 10'' conducted seven experiments at Venus and Mercury. Six of these experiments had a dedicated scientific instrument to collect data. The experiments and instruments were designed by research laboratories and educational institutions from across the United States. Out of forty-six submissions, JPL selected seven experiments on the basis of maximizing science return without exceeding cost guidelines: together, the seven scientific experiments cost US12.6 million dollars, about one-eighth of the total mission budget.


Television photography

The imaging system, the Television Photography Experiment, consisted of two Cassegrain telescopes feeding vidicon tubes. The main telescope could be bypassed to a smaller wide angle optic, but using the same tube. It had an 8-position filter wheel, with one position occupied by a mirror for the wide-angle bypass. TV camera exposures ranged from 3 ms to 12 s with each camera being able to take a picture every 42 s. The picture resolution was 832 x 700 pixels, 8-bit coded. The entire imaging system was imperiled when electric heaters attached to the cameras failed to turn on immediately after launch. To avoid the Sun's damaging heat, the cameras were deliberately placed on the spacecraft side facing away from the Sun. Consequently, the heaters were needed to prevent the cameras from losing heat and become so cold that they would become damaged. JPL engineers found that the vidicons could generate enough heat through normal operation to stay just above the critical temperature of ; therefore they advised against turning off the cameras during the flight. Test photos of the Earth and Moon showed that image quality had not been significantly affected. The mission team was pleasantly surprised when the camera heaters started working on 17 January 1974, two months after launch. Later investigation concluded that a short circuit in a different location on the probe had prevented the heater from turning on. This allowed the vidicons to be turned off as needed. Of the six main scientific instruments, the cameras were by far the most massive device. Requiring 67 watts of electricity, the cameras consumed more power than the other five instruments combined. The system returned about 7,000 photographs of Mercury and Venus during Mariner 10's flybys.


Infrared radiometer

The infrared
radiometer A radiometer or roentgenometer is a device for measuring the radiant flux (power) of electromagnetic radiation. Generally, a radiometer is an infrared radiation detector or an ultraviolet detector. Microwave radiometers operate in the micro ...
detected
infrared radiation Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
given off by the surface of Mercury and the atmosphere of Venus, from which the temperature could be calculated. How quickly the surface lost heat as it rotated into the planet's dark side revealed aspects about the composition of the surface, such as whether it was made out of rocks, or out of finer particles. The infrared radiometer contained a pair of Cassegrain telescopes fixed at an angle of 120° to each other and a pair of detectors made from antimony-bismuth
thermopile A thermopile is an electronic device that converts thermal energy into electrical energy. It is composed of several thermocouples connected usually in series or, less commonly, in parallel. Such a device works on the principle of the thermoel ...
s. The instrument was designed to measure temperatures as cold as and as hot as . Stillman C. Chase, Jr. of the Santa Barbara Research Center headed the infrared radiometer experiment.


Ultraviolet spectrometers

Two ultraviolet
spectrometers A spectrometer () is a scientific instrument used to separate and measure Spectrum, spectral components of a physical phenomenon. Spectrometer is a broad term often used to describe instruments that measure a continuous variable of a phenomeno ...
were involved in this experiment, one to measure UV absorption, the other to sense UV emissions. The occultation spectrometer scanned Mercury's edge as it passed in front of the Sun, and detected whether solar ultraviolet radiation was absorbed in certain wavelengths, which would indicate the presence of gas particles, and therefore an atmosphere. The
airglow Airglow is a faint emission of light by a planetary atmosphere. In the case of Earth's atmosphere, this optical phenomenon causes the night sky never to be completely dark, even after the effects of starlight and diffuse sky radiation, diffuse ...
spectrometer detected extreme ultraviolet radiation emanating from atoms of gaseous hydrogen, helium, carbon, oxygen, neon, and argon. Unlike the occultation spectrometer, it did not require backlighting from the Sun and could move along with the rotatable scan platform on the spacecraft. The experiment's most important goal was to ascertain whether Mercury had an atmosphere, but would also gather data at Earth and Venus and study the interstellar background radiation.


Plasma detectors

The plasma experiment's goal was to study the ionized gases ( plasma) of the solar wind, the temperature and density of its electrons, and how the planets affected the velocity of the plasma stream. The experiment contained two components, facing in opposite directions. The Scanning Electrostatic Analyzer was aimed toward the Sun and could detect positive ions and electrons, which were separated by a set of three concentric hemispherical plates. The Scanning Electron Spectrometer was aimed away from the Sun, and detected only electrons, using just one hemispherical plate. The instruments could be rotated about 60° to either side. By gathering data on the solar wind's movement around Mercury, the plasma experiment could be used to verify the magnetometer's observations of Mercury's magnetic field. Using the plasma detectors, Mariner 10 gathered the first ''in situ'' solar wind data from inside Venus' orbit. Shortly after launch, scientists found that the Scanning Electrostatic Analyzer had failed because a door shielding the analyzer did not open. An unsuccessful attempt was made to forcibly unfasten the door with the first course correction maneuver. The experiment operators had planned to observe the directions taken by positive ions prior to the ions' collision with the Analyzer, but this data was lost. The experiment was still able to collect some data using the properly functioning Scanning Electron Spectrometer.


Charged particle telescopes

The goal of the charged particles experiment was to observe how the
heliosphere The heliosphere is the magnetosphere, astrosphere, and outermost atmospheric layer of the Sun. It takes the shape of a vast, tailed bubble-like region of space. In plasma physics terms, it is the cavity formed by the Sun in the surrounding ...
interacted with
cosmic radiation Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Sol ...
. In connection with the plasma detectors and magnetometers, this experiment had the potential to provide additional evidence of a magnetic field around Mercury, by showing whether such a field had captured charged particles. Two telescopes were used to collect highly energetic electrons and atomic nuclei, specifically oxygen nuclei or less massive. These particles then passed through a set of detectors and were counted.


Magnetometers

Two fluxgate magnetometers were entrusted with discerning whether Mercury produced a
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
, and studying the interplanetary magnetic field between flybys. In designing this experiment, scientists had to account for interference from the magnetic field generated by Mariner 10's many electronic parts. For this reason, the magnetometers had to be situated on a long boom, one closer to the octagonal hub, the other one further away. Data from the two magnetometers would be cross-referenced to filter out the spacecraft's own magnetic field. Drastically weakening the probe's magnetic field would have increased costs.


Celestial Mechanics and Radio Science experiment

This experiment investigated the mass and gravitational characteristics of Mercury. It was of particular interest because of the planet's closeness to the Sun, large orbital eccentricity, and unusual spin-orbit resonance. As the spacecraft passed behind Mercury on the first encounter there was an opportunity to probe the atmosphere and to measure the radius of the planet. By observing phase changes in the S-band radio signal, measurements of the atmosphere could be made. The atmosphere was assessed as having a density of about .


Mission profile


Departing Earth

Boeing finished building the spacecraft at the end of June 1973, and ''Mariner 10'' was delivered from Seattle to JPL's headquarters in California, where JPL comprehensively tested the integrity of the spacecraft and its instruments. After the tests were finished, the probe was transported to the Eastern Test Range in Florida, the launch site. Technicians filled a tank on the spacecraft with of hydrazine fuel so that the probe could make course corrections, and attached squibs, whose detonation would signal ''Mariner 10'' to exit the launch rocket and deploy its instruments. The planned gravity assist at Venus made it feasible to use an
Atlas-Centaur The Atlas-Centaur was a United States expendable launch vehicle derived from the SM-65 Atlas D missile. The vehicle featured a Centaur (rocket stage), Centaur upper stage, the first such stage to use high-performance liquid hydrogen as fuel. La ...
rocket instead of a more powerful but more expensive
Titan IIIC The Titan IIIC was an expendable launch system used by the United States Air Force from 1965 until 1982. It was the first Titan (rocket family), Titan booster to feature large solid rocket motors and was planned to be used as a launcher for the D ...
. The probe and the Atlas-Centaur were attached together ten days prior to liftoff. Launch posed one of the largest risks of failure for the ''Mariner 10'' mission;
Mariner 1 Mariner 1, built to conduct the first American planetary flyby of Venus, was the first spacecraft of NASA's interplanetary Mariner program. Developed by Jet Propulsion Laboratory, and originally planned to be a purpose-built probe launched summ ...
, Mariner 3, and Mariner 8 all failed minutes after lift-off due to either engineering failures or Atlas rocket malfunctions. The mission had a launch period of about a month in length, from 16 October 1973, to 21 November 1973. NASA chose 3 November as the launch date because it would optimize imaging conditions when the spacecraft arrived at Mercury. On 3 November at 17:45 UTC, the Atlas-Centaur carrying ''Mariner 10'' lifted off from pad SLC-36B. The Atlas stage burned for around four minutes, after which it was jettisoned, and the Centaur stage took over for an additional five minutes, propelling ''Mariner 10'' to a
parking orbit A parking orbit is a temporary orbit used during the launch of a spacecraft. A launch vehicle follows a trajectory to the parking orbit, then coasts for a while, then engines fire again to enter the final desired trajectory. An alternative trajec ...
. The temporary orbit took the spacecraft one-third of the distance around Earth: this maneuver was needed to reach the correct spot for a second burn by the Centaur engines, which set ''Mariner 10'' on a path towards Venus. The probe then separated from the rocket; subsequently, the Centaur stage diverted away to avoid the possibility of a future collision. Never before had a planetary mission depended upon two separate rocket burns during the launch, and even with ''Mariner 10'', scientists initially viewed the maneuver as too risky. During its first week of flight, the ''Mariner 10'' camera system was tested by taking five photographic mosaics of the
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
and six of the
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
. It also obtained photographs of the north polar region of the Moon where prior coverage was poor. These photographs provided a basis for cartographers to update lunar maps and improve the lunar control net. File:Earth by Mariner10.jpg, Mosaic of Earth by images taken during Mariner 10 departure from Earth-Moon system. File:PIA02442 Moon's North Pole.jpg, Moon's North Pole - This mosaic is composed of 22 frames acquired in orange (15), clear (4), UV (2), and UV-polarized (1) wavelengths. File:Earth Mariner 10 - 0147-0200 1973-309 (23729635796).png, 8-frame mosaic of the Earth, acquired on November 5, 1973. Mariner 10 was approximately 200,000 km (120,000 mi) from the Earth. File:Earth - Mariner 10 (23681954686).png, 3-frame Mariner 10 mosaic of Earth, taken November 6, 1973 through the spacecraft's Minus UV filter. File:Earth & Moon by Mariner 10.jpg, The Earth and Moon from 2.6 million km. These images have been combined at right to illustrate the relative sizes of the two bodies.


Cruise to Venus

Far from being an uneventful cruise, ''Mariner 10''s three-month journey to Venus was fraught with technical malfunctions, which kept mission control on edge. Donna Shirley recounted her team's frustration: "It seemed as if we were always just patching Mariner 10 together long enough to get it on to the next phase and next crisis". A trajectory correction maneuver was made on 13 November 1973. Immediately afterward, the star-tracker locked onto a bright flake of paint which had come off the spacecraft and lost tracking on the guide star
Canopus Canopus is the brightest star in the southern constellation of Carina (constellation), Carina and the list of brightest stars, second-brightest star in the night sky. It is also Bayer designation, designated α Carinae, which is Rom ...
. An automated safety protocol recovered Canopus, but the problem of flaking paint recurred throughout the mission. The on-board computer also experienced unscheduled resets occasionally, which necessitated reconfiguring the clock sequence and subsystems. Periodic problems with the high-gain antenna also occurred during the cruise. On 8 January 1974, a malfunction thought to be caused by a short-circuited diode occurred in the power subsystem. As a result, the main booster regulator and inverter failed, leaving the spacecraft dependent on the redundant regulator. Mission planners feared that the same problem could recur in the redundant system and cripple the spacecraft. In January 1974, ''Mariner 10'' made ultraviolet observations of Comet Kohoutek. Another mid-course correction was made on 21 January 1974.


Venus flyby

The spacecraft passed Venus on 5 February 1974, the closest approach being at 17:01 UTC. It was the twelfth spacecraft to reach Venus and the eighth to return data from the planet, as well as the first mission to succeed in broadcasting images of Venus back to Earth. ''Mariner 10'' built upon observations made by ''Mariner 5'' six years earlier; importantly, ''Mariner 10'' had a camera whereas the prior mission lacked one. As ''Mariner 10'' veered around Venus, from the planet's night side to daylight, the cameras snapped the probe's first image of Venus, showing an illuminated arc of clouds over the north pole emerging from darkness. Engineers initially feared that the star-tracker could mistake the much brighter Venus for Canopus, repeating the mishaps with flaking paint. However, the star-tracker did not malfunction. Earth occultation occurred between 17:07 and 17:11 UTC, during which the spacecraft transmitted X-band radio waves through Venus' atmosphere, gathering data on cloud structure and temperature. Although Venus's cloud cover is nearly featureless in visible light, it was discovered that extensive cloud detail could be seen through Mariner's ultraviolet camera filters. Earth-based ultraviolet observation had shown some indistinct blotching even before ''Mariner 10'', but the detail seen by Mariner was a surprise to most researchers. The probe continued photographing Venus until 13 February 1974 Among the encounter's 4165 acquired photographs, one resulting series of images captured a thick and distinctly patterned atmosphere making a full revolution every four days just as terrestrial observations had suggested. The mission revealed the composition and meteorological nature of the atmosphere of Venus. Data from the radio science experiment measured the extent to which radio waves passing through the atmosphere were refracted, which was used to calculate the density, pressure, and temperature of the atmosphere at any given altitude. Overall, atmospheric temperature is higher closer to the planet's surface, but ''Mariner 10'' found four altitudes where the pattern was reversed, which could signify the presence of a layer of clouds. The inversions occurred at the levels, confirming previous observations made by the ''Mariner 5'' encounter. The ultraviolet spectrometers identified the chemical substances that comprise Venus' atmosphere. The elevated concentration of atomic oxygen in the upper atmosphere showed that the atmosphere is stratified into upper and lower layers that do not mix with each other; photographs of the upper and lower cloud layers corroborated this hypothesis. ''Mariner 10''s ultraviolet photographs were an invaluable information source for studying the churning clouds of Venus' atmosphere. The mission researchers believed the cloud features they photographed were located in the stratosphere and upper troposphere, created by condensation; they also concluded that the contrast between darker and lighter features was due to differences in the cloud's absorptivity of UV light. The subsolar region was of particular interest: as the sun is straight overhead, it imparts more solar energy to this area than other part of the planet. Compared to the rest of the planet's atmosphere, the subsolar region was highly active and irregular. "Cells" of air lifted by convection, each up to wide, were observed forming and dissipating within the span of a few hours; some had polygonal outlines. The gravity assist was also a success, coming well within the acceptable margin for error. In the four hours between 16:00 and 20:00 UTC on 5 February 1974, ''Mariner 10''s heliocentric velocity dropped from to . This changed the shape of the spacecraft's elliptical orbit around the Sun, so that the perihelion now coincided with the orbit of Mercury. File:Mariner 10's encounter with Venus (diagram).jpg, Venus encounter File:Venus Mariner10 UV.png, Venus in UV light. This image is a mosaic of two frames. File:Venus-m10.jpg, Venus cloud patterns File:Venus-real color.jpg, Venus in real colors, processed from clear and blue filtered images File:PIA23791-Venus-RealAndEnhancedContrastViews-20200608 (cropped).jpg, Color composite using orange and ultraviolet filters with modern image processing software


First Mercury flyby

The spacecraft flew past Mercury three times. The first Mercury encounter took place at 20:47 UTC on 29 March 1974, at a range of , passing on the shadow side. File:Mariner 10's encounter with Mercury (diagram).jpg, First Mercury encounter File:Planet Mercury - GPN-2000-000465.jpg, Mariner 10's first image of Mercury acquired on March 24, 1974. File:PIA02418 Outgoing Hemisphere.jpg, This mosaic shows the planet Mercury as seen by Mariner 10 as it sped away from the planet on March 29, 1974. File:PIA02446 Discovery Scarp.jpg, One of the most prominent lobate scarps ( Discovery Scarp), photographed by Mariner 10 during its first encounter with Mercury.


Second Mercury flyby

After looping once around the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
while Mercury completed two orbits, ''Mariner 10'' flew by Mercury again on 21 September 1974, at a more distant range of below the southern hemisphere. File:Hero Rupes.jpg, Hero Rupes is a long arcuate lobate scarp visible on this image. Mariner 10 image 0166842. File:Mariner 10 image 0166753.png, Cervantes basin at left, Bernini at right, and Van Gogh at bottom center. South is to upper right. File:South Pole of Mercury.jpg, Mercury's south pole was photographed by one of Mariner 10's TV cameras as the spacecraft made its second close flyby of the planet September 21. File:PIA03101 Mercury's Southern Hemisphere.jpg, A mosaic of images from the second encounter, covering the equator to the south pole.


Third Mercury flyby

After losing roll control in October 1974, a third and final encounter, the closest to Mercury, took place on 16 March 1975, at a range of , passing almost over the north pole. File:Mariner10 - third Mercury encounter - scheme.PNG, Third Mercury encounter File:Mercury Mariner10.jpg, Mercury in color File:Mercure fausses couleurs.jpg, Mercury in false-color File:Mercury, Australia region.jpg, Australia region File:Mercury, Aurora region.jpg, Aurora region File:Mercury, Caduceata region.jpg, Caduceata region File:Mercure plaine lisse.jpg, The
Schubert Franz Peter Schubert (; ; 31 January 179719 November 1828) was an Austrian composer of the late Classical period (music), Classical and early Romantic music, Romantic eras. Despite his short life, Schubert left behind a List of compositions ...
basin, in diameter, filled by smooth plains. The basin's hummocky rim is partly degraded and cratered by later events. File:PIA03102 Mercury's Caloris Basin.jpg, Computer Photomosaic of the Caloris Basin


End of mission

With its maneuvering gas just about exhausted, ''Mariner 10'' started another orbit of the Sun. Engineering tests were continued until 24 March 1975, when final depletion of the nitrogen supply was signaled by the onset of an un-programmed pitch turn. Commands were sent immediately to the spacecraft to turn off its transmitter, and radio signals to Earth ceased. ''Mariner 10'' is presumably still orbiting the Sun, although its electronics have probably been damaged by the Sun's radiation. ''Mariner 10'' has not been spotted or tracked from Earth since it stopped transmitting. The only ways it would not be orbiting would be if it had been hit by an asteroid or gravitationally perturbed by a close encounter with a large body.


Discoveries

During its flyby of Venus, ''Mariner 10'' discovered evidence of rotating clouds and a very weak magnetic field. Using a near-
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
filter, it photographed Venus's chevron clouds and performed other
atmospheric An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosphere ...
studies. The spacecraft flew past Mercury three times. Owing to the geometry of its orbit – its orbital period was almost exactly twice that of Mercury's – the same side of Mercury was sunlit each time, so it was only able to
map A map is a symbolic depiction of interrelationships, commonly spatial, between things within a space. A map may be annotated with text and graphics. Like any graphic, a map may be fixed to paper or other durable media, or may be displayed on ...
40–45% of Mercury's surface, taking over 2,800 photos. It revealed a more or less Moon-like surface. It contributed enormously to the understanding of Mercury, whose surface had not been successfully resolved through telescopic observation. The regions mapped included most or all of the Shakespeare, Beethoven, Kuiper, Michelangelo, Tolstoj, and Discovery quadrangles, half of Bach and Victoria quadrangles, and small portions of Solitudo Persephones (later Neruda), Liguria (later Raditladi), and Borealis quadrangles. ''Mariner 10'' also discovered that Mercury has a tenuous
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
consisting primarily of
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
, as well as a
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
and a large iron-rich core. Its radiometer readings suggested that Mercury has a nighttime temperature of and maximum daytime temperatures of . Planning for ''
MESSENGER Messenger, Messengers, The Messenger or The Messengers may refer to: People * Courier, a person or company that delivers messages, packages, or mail * Messenger (surname) * Bicycle messenger, a bicyclist who transports packages through cities * M ...
'', a spacecraft that surveyed Mercury until 2015, relied extensively on data and information collected by ''Mariner 10''.


''Mariner 10'' Commemoration

In 1975, the US Post Office issued a
commemorative stamp A commemorative stamp is a postage stamp, often issued on a significant date such as an anniversary, to honor or commemorate a place, event, person, or object. The ''subject'' of the commemorative stamp is usually spelled out in print, unlike defi ...
featuring the ''Mariner 10'' space probe. The 10-cent ''Mariner 10'' commemorative stamp was issued on 4 April 1975, at Pasadena, California.


See also

*
1973 in spaceflight 1973 saw the launch of the first American Space station known as Skylab on a Saturn V rocket. Launches , colspan=8, January , - , colspan=8, February , - , colspan=8, March , - , colspan=8, April , - , ...
* Exploration of Mercury * List of missions to Venus *
Timeline of artificial satellites and space probes This timeline of artificial satellites and space probes includes uncrewed spacecraft including technology demonstrators, observatories, lunar probes, and interplanetary probes. First satellites from each country are included. Not included are most ...


Footnotes


References


Bibliography and Further reading

* * * * * * * * *


External links


''The Voyage of Mariner 10: Mission to Venus and Mercury'' (NASA SP-424) 1978
Entire book about ''Mariner 10'', with all pictures and diagrams, on-line. Scroll down to click on the "Table of Contents" link
PDF version

''Mariner 10'', NASA's 1973–75 Venus/Mercury Mission





''Mariner 10'' Mission Profile
b
NASA's Solar System Exploration


* ttps://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1973-085A Master Catalog entry for ''Mariner 10''at the National Space Science Data Center
Boeing: History – Products – Boeing ''Mariner 10'' Spacecraft
{{Orbital launches in 1973 Mariner program Missions to Mercury Missions to Venus Derelict space probes Derelict satellites in heliocentric orbit 1973 in spaceflight Spacecraft launched by Atlas-Centaur rockets Spacecraft launched in 1973 de:Mariner#Mariner 10