Maricite
   HOME

TheInfoList



OR:

Maricite or ''marićite'' is a sodium iron
phosphate mineral Phosphate minerals are minerals that contain the tetrahedrally coordinated phosphate () anion, sometimes with arsenate () and vanadate () substitutions, along with chloride (Cl−), fluoride (F−), and hydroxide (OH−) anions, that also fit in ...
(NaFe2+PO4), that has two metal cations connected to a phosphate tetrahedron. It is structurally similar to the much more common mineral
olivine The mineral olivine () is a magnesium iron Silicate minerals, silicate with the chemical formula . It is a type of Nesosilicates, nesosilicate or orthosilicate. The primary component of the Earth's upper mantle (Earth), upper mantle, it is a com ...
. Maricite is brittle, usually colorless to gray, and has been found in nodules within
shale Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of Clay mineral, clay minerals (hydrous aluminium phyllosilicates, e.g., Kaolinite, kaolin, aluminium, Al2Silicon, Si2Oxygen, O5(hydroxide, OH)4) and tiny f ...
beds often containing other minerals. Maricite is most commonly known to be found in the Big Fish River area of the
Yukon Yukon () is a Provinces and territories of Canada, territory of Canada, bordering British Columbia to the south, the Northwest Territories to the east, the Beaufort Sea to the north, and the U.S. state of Alaska to the west. It is Canada’s we ...
Territory,
Canada Canada is a country in North America. Its Provinces and territories of Canada, ten provinces and three territories extend from the Atlantic Ocean to the Pacific Ocean and northward into the Arctic Ocean, making it the world's List of coun ...
, but it has also been found in
Eastern Germany The new states of Germany () are the five re-established states of the former German Democratic Republic (GDR) that unified with the Federal Republic of Germany (FRG) with its 10 "old states" upon German reunification on 3 October 1990. The ...
, as well as inside of various meteorites around the world. Maricite is named after Luka Maric (1899–1979) of Croatia, the longtime head of the mineralogy and petrography departments at the
University of Zagreb The University of Zagreb (, ) is a public university, public research university in Zagreb, Croatia. It is the largest Croatian university and one of the oldest continuously operating universities in Europe. The University of Zagreb and the Unive ...
. Maricite is a sodium iron phosphate from the extremely diverse phosphate mineral group. In 1977 maricite was discovered in the Big Fish River area, Yukon Territory, Canada (Fleischer, Chao, and Mandarino, 1979). This is an important geologic location that has provided the discovery of several new phosphate minerals. Maricite is recognized for its possible use in sodium ion battery research as well as its role as a reaction product inside of fossil-fired electrical power generating station boilers which experience corrosion (Bridson, ''et al.'', 1997; Ong, ''et al.'', 2011).


Composition

Maricite is a member of the phosphate mineral group. Phosphate minerals have one or more metal cations bonded to the phosphate anion PO4. (Hawthorne, F.C., 1998). In maricite the metals bonded to PO4 are sodium and iron (Sturman, ''et al.'', 1977). The empirical formula for maricite is NaFePO4 and it has a molar mass of 173.81 g/mol (Yahia, ''et al.'', 2008; Tremaine, Xiao, 1999). The general formula for maricite is ABPO4, (Yahia, ''et al.'', 2008). The chemical composition of the mineral was originally determined by the group of Dr. Corlett from the Department of Geological Sciences at Queen’s University, Kingston, Ontario, using electron microprobe analysis, and found to be Na 0.91(Fe 0.89 Mn 0.07 Mg 0.03)P 1.02 O 4.00 (Sturman, ''et al.'', 1977) when normalized to four oxygen atoms. The weight percentages were determined using six different points on a thin section and averaging the percentages of each oxide in all of the samples. The results in weight percent average of oxides are as follows: Na2O 16.5%, MgO 0.8%, CaO 0.0%, MnO 3.1%, FeO 37.4%, P2O5 42.5%, with a total of 100.3%. When looking at these results, one may determine that the majority of the oxide weight composition is made of FeO with P2O5 making up almost the same weight percentage. There is a significant percentage of the Na2O oxide and an insignificant percentage of the CaO oxide (~0). It is clear from looking at the oxide content of the mineral that the main components are going to be sodium, iron, phosphorus, and oxygen. The oxide factor may be used to determine the weight percentages of the individual elements as follows, 1 sodium atom totaling ~13% of composition, 1 iron atom totaling ~32% of composition, 1 phosphorus atom totaling ~18% of composition, and 4 oxygen atoms totaling ~37% of composition (Sturman, ''et al.'', 1977).


Structure

Maricite is an ionic double metal phosphate, with a space filling capacity of about 70% (Le Page, and Donnay, 1977). The structure of maricite contains a sodium cation enclosed by ten oxygen anions within 10 Å, in an irregular coordination. There is (2+2+2) type distorted tetrahedron around the iron (Bridson, ''et al.'', 1997). The Å distances between iron and oxygen are between 2.33 and 2.93. The phosphate tetrahedron is almost regular, with 2 short bonds and 2 longer bonds (Bridson, ''et al.'', 1997). The iron atom has four surrounding oxygen atoms giving it tetrahedral coordination. Half of the oxygen atoms are coordinated with two sodium atoms, two iron atoms, and one phosphorus atom while the other half are coordinated with three sodium atoms, one iron atom and one phosphorus atom (Bridson, ''et al.'', 1997). The structure of maricite has been compared to the structure of olivine, (Lee, ''et al.'', 2011). The structures of the two minerals are similar because they both contain PO4 in their atomic make-up (Moreau, ''et al.'', 2010). However, the M1 and M2 sites for LiFePO4 and NaFePO4 have reverse occupancies making their structures different (Lee, ''et al.'', 2011). In olivine, the M1 site holds the alkali metal while the M2 site holds the transition metal, whereas in maricite, the M1 site holds the transition metal and the M2 site holds the alkali metal (Ong, ''et al.'', 2011).


Physical properties

Maricite (NaFePO4), is found in elongated grains up to 15 cm long in the 00direction. The grains are radial to sub parallel in structure. Maricite is usually colorless to gray, but is sometimes a pale brown color and it has a white streak. It has a vitreous luster due to its low values of refractive indices, α = 1.676 β = 1.695 γ = 1.698, and its opacity is transparent to translucent (Fleisher, ''et al.'', 1979). Maricite has no cleavage or pleochroism, and it does not fluoresce in UV light. Maricite has a hardness of 4–4.5 and a density of 3.64. The mineral is brittle, with an uneven splintery fracture. It is a member of the orthorhombic crystal class and the biaxial negative optical class and has a 2V calculation of 43°. The '' Hermann-Mauguin notation'' symbol is 2/m 2/m 2/m, and it is in the Pmnb space group. Yvon Le Page and Gabrielle Donnay determined that the cell dimensions are a 6.864(2), b 8.994(2), and c 5.049(1). J. A. Mandarino determined the d-spacings using ''
x-ray powder diffraction Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. An instrument dedicated to performing such powder measurements is cal ...
'' and '' Bragg’s law'' to be 2.574 at an intensity of 100, 2.729 at an intensity of 90, 2.707 at an intensity of 80, 1.853 at an intensity of 60, 3.705 at an intensity of 40, 2.525 at an intensity of 30, and 1.881 also at an intensity of 30 (Fleisher, ''et al.'', 1979; Sturman, ''et al.'', 1977).


Geologic occurrence

Maricite was first discovered in the Big Fish River area near the eastern border of the Yukon Territory around Latitude 68° 30’ N and Longitude 136° 30’ W. This area is a kulanite- baricite- peniksite type locality composed mostly of bedded
shale Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of Clay mineral, clay minerals (hydrous aluminium phyllosilicates, e.g., Kaolinite, kaolin, aluminium, Al2Silicon, Si2Oxygen, O5(hydroxide, OH)4) and tiny f ...
s and sideritic
limestone Limestone is a type of carbonate rock, carbonate sedimentary rock which is the main source of the material Lime (material), lime. It is composed mostly of the minerals calcite and aragonite, which are different Polymorphism (materials science) ...
s. Maricite has been found in nodules up to 15 cm long within the shale beds. Some of the nodules contained only one mineral, while others contained several different minerals. Very few of the nodules consisted of only maricite. Most of the samples which contained maricite also had
quartz Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The Atom, atoms are linked in a continuous framework of SiO4 silicon–oxygen Tetrahedral molecular geometry, tetrahedra, with each oxygen being shared between two tet ...
,
ludlamite Ludlamite is a rare phosphate mineral with chemical formula . It was first described in 1877 for an occurrence in Wheal Jane mine in Cornwall, England and named for English mineralogist Henry Ludlam (1824–1880). Occurrence It occurs in granit ...
,
vivianite Vivianite () is a hydrated iron(II) phosphate mineral found in a number of geological environments. Small amounts of manganese Mn2+, magnesium Mg2+, and calcium Ca2+ may substitute for iron Fe2+ in its structure.Gaines et al (1997) Dana's New ...
,
pyrite The mineral pyrite ( ), or iron pyrite, also known as fool's gold, is an iron sulfide with the chemical formula Fe S2 (iron (II) disulfide). Pyrite is the most abundant sulfide mineral. Pyrite's metallic luster and pale brass-yellow hue ...
and/or wolfeite. When samples which appeared to only contain maricite were examined closely in a thin section, there were small inclusions of ludlamite, quartz, and vivianite present along the fractures (Sturman, ''et al.'', 1977). The other location which formations of maricite have been found is
Saxony Saxony, officially the Free State of Saxony, is a landlocked state of Germany, bordering the states of Brandenburg, Saxony-Anhalt, Thuringia, and Bavaria, as well as the countries of Poland and the Czech Republic. Its capital is Dresden, and ...
, Germany (Thomas, R. and Webster J.D., 2000). Both this location and the Big Fish River Canada location are situated just north of
convergent plate boundaries A convergent boundary (also known as a destructive boundary) is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a ...
. Both areas consist of mountains and hills which are made of
metamorphic Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than and, often, elevated pressure of or more, causi ...
and
igneous rock Igneous rock ( ), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava. The magma can be derived from partial ...
s (Thomas, R. and Webster J.D., 2000; Sturman, ''et al.'', 1977). Maricite has also been discovered in
meteorite A meteorite is a rock (geology), rock that originated in outer space and has fallen to the surface of a planet or Natural satellite, moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical ...
s found in
Eastern Antarctica East Antarctica, also called Greater Antarctica, constitutes the majority (two-thirds) of the Antarctica, Antarctic continent, lying primarily in the Eastern Hemisphere south of the Indian Ocean, and separated from West Antarctica by the Trans ...
,
Uttar Pradesh Uttar Pradesh ( ; UP) is a States and union territories of India, state in North India, northern India. With over 241 million inhabitants, it is the List of states and union territories of India by population, most populated state in In ...
,
India India, officially the Republic of India, is a country in South Asia. It is the List of countries and dependencies by area, seventh-largest country by area; the List of countries by population (United Nations), most populous country since ...
and
Avannaa Avannaa, originally Nordgrønland ("North Greenland"), was one of the three counties () of Greenland, which existed until 31 December 2008. The county seat was Qaanaaq, the main settlement. It was one of the least-densely populated administrat ...
,
Greenland Greenland is an autonomous territory in the Danish Realm, Kingdom of Denmark. It is by far the largest geographically of three constituent parts of the kingdom; the other two are metropolitan Denmark and the Faroe Islands. Citizens of Greenlan ...
(Johnson, ''et al.'', 2001; Kracher, ''et al.'', 1977; Partridge, ''et al.'', 1990).


History

Maricite was named by Darko Sturman and Joseph Mandarino in honor of Luka Maric. Maric was the longtime head of the department of mineralogy and petrography at the University of Zagreb in Croatia. The name Maricite was approved in 1977 by the commission on new minerals and mineral names. It is unclear exactly why the mineral was named in honor of Maric, but he did author several geology books including one entitled Magmatiti u Uzhem Podruchju Rudnika Bor u Istochnoj Srbiji, which is Croatian for Magmatites in the Narrower Ore Deposit Region of the Bor Mine (Sturman, ''et al.'', 1977).


See also

*
Lithium iron phosphate Lithium iron phosphate or lithium ferro-phosphate (LFP) is an inorganic compound with the formula . It is a gray, red-grey, brown or black solid that is insoluble in water. The material has attracted attention as a component of lithium iron phosp ...


References

*Bridson, J. Quinlan, S.E. and Tremaine, P.R. (1998). Synthesis and crystal structure of maricite and sodium iron (111) hydroxyphosphate. Chem mater.Volume 10. Pages 763–768. *Fleischer, M., Chao, G.Y. and Mandarino, J.A. (1979). New mineral names. American Mineralogist.Volume 64. Pages 652–659. *Hawthorne, F.C. (1998). Structure and chemistry of phosphate minerals. Mineralogical Magazine. Volume 62. Pages 141–164. *Johnson, C.L., D.S. Lauretta, and P.R. Buseck, A High-resolution Transmission Electron Microscopy Study of Fine-Grained Phosphates in Metal From the Bishunpur LL3.1 Ordinary Chondrite, 63rd Annual Meteoritical Society Meeting (5303.pdf) *Lauretta, Dante S., Peter R. Buseck, and Thomas J. Zega (2001) Opaque minerals in the matrix of the Bishunpur (LL3.1) chondrite: constraints on the chondrule formation environment. Geochimica et Cosmochimica Acta: 65(8) (15 April 2001): 1337–1353. *Kracher, Kurat, A.G. and Buchwald, V.F. (1977). Cape York: the extraordinary mineralogy of an ordinary iron meteorite and its implications for the genesis of III AB irons. Geochemical Journal. Volume 11. Pages 207–217. *Lee, T.K., Ramesh, T.N., Nan, F., Botton, G. and Nazur, L.F. (2011). Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem mater.Volume 23. Pages 3593–3600. *Le Page, Y. and Donnay, G. (1977)
The crystal structure of the new mineral maricite, NaFePO4.
The Canadian Mineralogist. Volume 15. Pages 518–521. *Moreau, P., Guyomard, D. and Boucher, F. (2010). Structure and stability of sodium intercalculated phases in olivine FePO4. Chem Mater.Volume 22. Pages 4126–4128. *Ong, S.P., Chevrier, V.L., Hautier G., Jain A., Moore, C., Kim, S., Ma, X. and Cedar, G. (2011). Voltage, stability and diffusion barrier differences between sodium-ion and lithium ion intercalculation materials. Energy and Environmental Science. Volume 4. Pages 3680–3688. *Sturman, B.D., Mandarino, J.A. and Corlett, M.I. (1977)
Maricite, a sodium iron phosphate, from the Big Fish River area, Yukon Territory, Canada.
The Canadian Mineralogist.Volume 15. Page 396. *Thomas, R. and Webster J.D. (2000). Strong tin enrichment in a pegmatite-forming melt. Mineralium Deposita. Volume 35. Pages 570–582. *Tremaine, P.R. and Xiao Caibin. (1999). Enthalpies of formation and heat capacity functions for maricite, NaFePO4(cr), and sodium iron (I I I ) hydroxyphosphate, Na3Fe(PO4)2.(Na4/3O)(cr). Journal of Chemical Thermodynamics. Volume 31. Pages 1307–1320. *Partridge, T., Reimold, W.U. and Walraven, F. (1990). The Pretoria Zoutpan Crater: First results from the 1988 drilling project. Meteoritics. Volume 25. Page 396–398. *Yahia, B.H., Gaudin, E. and Darriet, J. (2008). Synthesis, structures and magnetic properties of the new vandates AgMnVO4 and RbMnVO4. Journal of Solid State Chemistry. Volume 181. Pages 3103–3109.


External links

{{DEFAULTSORT:Sodium Iron Phosphate Sodium minerals Iron(II) minerals Phosphate minerals Orthorhombic minerals Minerals in space group 62