Maraging Steels
   HOME

TheInfoList



OR:

Maraging steels (a
portmanteau In linguistics, a blend—also known as a blend word, lexical blend, or portmanteau—is a word formed by combining the meanings, and parts of the sounds, of two or more words together.
of "
martensitic Martensite is a very hard form of steel crystalline structure. It is named after German metallurgist Adolf Martens. By analogy the term can also refer to any crystal structure that is formed by diffusionless transformation. Properties Mart ...
" and "aging") are
steel Steel is an alloy of iron and carbon that demonstrates improved mechanical properties compared to the pure form of iron. Due to steel's high Young's modulus, elastic modulus, Yield (engineering), yield strength, Fracture, fracture strength a ...
s that possess superior strength and toughness without losing
ductility Ductility refers to the ability of a material to sustain significant plastic Deformation (engineering), deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic def ...
. ''Aging'' refers to the extended heat-treatment process. These steels are a special class of very-low-
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
ultra-high-strength steels that derive their strength from
precipitation In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls from clouds due to gravitational pull. The main forms of precipitation include drizzle, rain, rain and snow mixed ("sleet" in Commonwe ...
of
intermetallic An intermetallic (also called intermetallic compound, intermetallic alloy, ordered intermetallic alloy, long-range-ordered alloy) is a type of metallic alloy that forms an ordered solid-state compound between two or more metallic elements. Inte ...
compounds rather than from carbon. The principal alloying metal is 15 to 25
wt% In chemistry, the mass fraction of a substance within a mixture is the ratio w_i (alternatively denoted Y_i) of the mass m_i of that substance to the total mass m_\text of the mixture. Expressed as a formula, the mass fraction is: : w_i = \frac ...
nickel Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
. Secondary alloying metals, which include
cobalt Cobalt is a chemical element; it has Symbol (chemistry), symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. ...
,
molybdenum Molybdenum is a chemical element; it has Symbol (chemistry), symbol Mo (from Neo-Latin ''molybdaenum'') and atomic number 42. The name derived from Ancient Greek ', meaning lead, since its ores were confused with lead ores. Molybdenum minerals hav ...
and
titanium Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
, are added to produce intermetallic
precipitates In an aqueous solution, precipitation is the "sedimentation of a solid material (a precipitate) from a liquid solution". The solid formed is called the precipitate. In case of an inorganic chemical reaction leading to precipitation, the chemic ...
. The first maraging steel was developed by Clarence Gieger Bieber at
Inco Vale Canada Limited (formerly Vale Inco, CVRD Inco and Inco Limited; for corporate branding purposes simply known as "Vale" and pronounced in English) is a wholly owned subsidiary of the Brazilian mining company Vale. Vale's nickel mining and ...
in the late 1950s. It produced 20 and 25 wt% Ni steels with small additions of
aluminium Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
, titanium, and
niobium Niobium is a chemical element; it has chemical symbol, symbol Nb (formerly columbium, Cb) and atomic number 41. It is a light grey, crystalline, and Ductility, ductile transition metal. Pure niobium has a Mohs scale of mineral hardness, Mohs h ...
. The intent was to induce age-hardening with the aforementioned intermetallics in an iron-nickel martensitic matrix, and it was discovered that Co and Mo complement each other very well. Commercial production started in December 1960. A rise in the price of Co in the late 1970s led to cobalt-free maraging steels. The common, non-stainless grades contain 17–19 wt% Ni, 8–12 wt% Co, 3–5 wt% Mo and 0.2–1.6 wt% Ti. Addition of chromium produces corrosion-resistant stainless grades. This also indirectly increases
hardenability Jominy test dimensioning Jominy test apparatus Used Jominy test-piece Hardenability is the depth to which a steel is hardened after putting it through a heat treatment process. It should not be confused with hardness, which is a measure of a s ...
as they require less Ni; high-Cr, high-Ni steels are generally
austenitic Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K ...
and unable to become
martensite Martensite is a very hard form of steel crystalline structure. It is named after German metallurgist Adolf Martens. By analogy the term can also refer to any crystal structure that is formed by diffusionless transformation. Properties Mar ...
when heat treated, while lower-Ni steels can. Alternative variants of Ni-reduced maraging steels are based on alloys of Fe and Mn plus minor additions of Al, Ni and Ti with compositions between Fe-9wt% Mn to Fe-15wt% Mn qualify used.. The manganese has an effect similar to nickel, i.e. it stabilizes the austenite phase. Hence, depending on their manganese content, Fe-Mn maraging steels can be fully martensitic after quenching them from the high temperature austenite phase or they can contain retained austenite. The latter effect enables the design of maraging-transformation-induced-plasticity (TRIP) steels.


Properties

Due to the low carbon content (less than 0.03%) maraging steels have good
machinability Machinability is the ease with which a metal can be cut ( machined) permitting the removal of the material with a satisfactory finish at low cost.Degarmo, p. 542. Materials with good machinability (free-machining materials) require little power t ...
. Prior to aging, they may also be cold rolled to as much as 90% without cracking. Maraging steels offer good
weldability The weldability, also known as joinability,. of a material refers to its ability to be welded. Many metals and thermoplastics can be welded, but some are easier to weld than others (see Rheological weldability). A material's weldability is used t ...
, but must be aged afterward to restore the original properties to the
heat affected zone In fusion welding, the heat-affected zone (HAZ) is the area of base material, either a metal or a thermoplastic, which is not melted but has had its microstructure and properties altered by welding or heat intensive cutting operations. The heat ...
. When
heat-treated Heat treating (or heat treatment) is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are als ...
the alloy has very little dimensional change, so it is often machined to its final dimensions. Due to the high alloy content maraging steels have a high hardenability. Since ductile Fe-Ni martensites are formed upon cooling, cracks are non-existent or negligible. The steels can be nitrided to increase case hardness and polished to a fine surface finish. Non-stainless varieties of maraging steel are moderately
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
-resistant and resist
stress corrosion Stress corrosion cracking (SCC) is the growth of crack formation in a corrosive environment. It can lead to unexpected and sudden failure of normally ductile metal alloys subjected to a tensile stress, especially at elevated temperature. SCC ...
and
hydrogen embrittlement Hydrogen embrittlement (HE), also known as hydrogen-assisted cracking or hydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can Permeation, permeate solid metals. O ...
. Corrosion-resistance can be increased by
cadmium plating Plating is a finishing process in which a metal is deposited on a surface. Plating has been done for hundreds of years; it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderab ...
or
phosphating Phosphate conversion coating is a chemical treatment applied to steel parts that creates a thin adhering layer of iron, zinc, or manganese phosphates to improve corrosion resistance or lubrication or as a foundation for subsequent coatings or pai ...
.


Grades of maraging steel

Maraging steels are usually described by a number (e.g.,
SAE steel grades The SAE steel grades system is a standard alloy numbering system (SAE J1086 – Numbering Metals and Alloys) for steel grades maintained by SAE International. In the 1930s and 1940s, the American Iron and Steel Institute (AISI) and SAE were both ...
200, 250, 300 or 350), which indicates the approximate nominal tensile strength in thousands of pounds per square inch (ksi). The compositions and required properties were defined in US military standard MIL-S-46850D.Military Specification 46850D: STEEL : BAR, PLATE, SHEET, STRIP, FORGINGS, AND EXTRUSIONS, 18 PERCENT NICKEL ALLOY, MARAGING, 200 KSI, 250 KSI, 300 KSI, AND 350 KSI, HIGH QUALITY, available from http://everyspec.com/MIL-SPECS/MIL-SPECS-MIL-S/MIL-S-46850D_19899/ The higher grades have more cobalt and titanium in the alloy; the compositions below are taken from table 1 of MIL-S-46850D. As of July 1, 2024, that standard was cancelled by the U.S. Military and replaced with a number of SAE AMS specifications, which now govern each grade in a separate specification, as enumerated below. MIL-S-46850D, Notice 3 is a notice of cancellation issued 1 July 2024, and specifies the replacement specifications listed. U.S. users can obtain the original MIL standard as well as the associated notices from the search tool at https://quicksearch.dla.mil/qsSearch.aspx This family is known as the 18Ni maraging steels, from its nickel percentage. There is also a family of cobalt-free maraging steels which are cheaper but not quite as strong; one example is Fe-18.9Ni-4.1Mo-1.9Ti. There has been Russian and Japanese research in Fe-Ni-Mn maraging alloys.


Heat treatment cycle

The steel is first annealed at approximately for 15–30 minutes for thin sections and for 1 hour per thickness for heavy sections, to ensure formation of a fully austenitized structure. This is followed by
air cooling Air cooling is a method of dissipating heat. It works by expanding the surface area or increasing the flow of air over the object to be cooled, or both. An example of the former is to add cooling fins to the surface of the object, either by maki ...
or quenching to room temperature to form a soft, heavily dislocated iron-nickel lath (untwinned) martensite. Subsequent aging (
precipitation hardening Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and so ...
) of the more common alloys for approximately 3 hours at a temperature of produces a fine
dispersion Dispersion may refer to: Economics and finance *Dispersion (finance), a measure for the statistical distribution of portfolio returns * Price dispersion, a variation in prices across sellers of the same item *Wage dispersion, the amount of variat ...
of Ni3(X,Y) intermetallic phases along dislocations left by martensitic transformation, where X and Y are
solute In chemistry, a solution is defined by IUPAC as "A liquid or solid phase containing more than one substance, when for convenience one (or more) substance, which is called the solvent, is treated differently from the other substances, which are ...
elements added for such precipitation. Overaging leads to a reduction in stability of the primary, metastable, coherent precipitates, leading to their dissolution and replacement with semi-coherent
Laves phase Laves phases are intermetallic phase (matter), phases that have composition AB2 and are named for Fritz Laves who first described them. The phases are classified on the basis of geometry alone. While the problem of Close-packing of equal spheres ...
s such as Fe2Ni/Fe2Mo. Further excessive heat-treatment brings about the decomposition of the martensite and reversion to austenite. Newer compositions of maraging steels have revealed other intermetallic stoichiometries and crystallographic relationships with the parent martensite, including rhombohedral and massive complex Ni50(X,Y,Z)50 (Ni50M50 in simplified notation).


Processing of maraging steel

The maraging steels are a popular class of structural materials because of their superior mechanical properties among different categories of steel. Their
mechanical properties A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one mate ...
can be tailored for different applications using various processing techniques. Some of the most widely used processing techniques for manufacturing and tuning of mechanical behavior of maraging steels are listed as follows: * Solution treatment: As described in the section of Heat treatment cycle, the maraging steel is heated to a specific temperature range, after which it is quenched rapidly. In this step the alloying elements are dissolved, and a homogeneous
microstructure Microstructure is the very small scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25× magnification. The microstructure of a material (such as metals, polymer ...
is achieved. Homogeneous
microstructure Microstructure is the very small scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25× magnification. The microstructure of a material (such as metals, polymer ...
thus achieved improves the overall mechanical behavior of maraging steels such as fracture toughness and fatigue resistance. * Aging of maraging steels: It is an important processing step as this step leads to precipitation of
intermetallic An intermetallic (also called intermetallic compound, intermetallic alloy, ordered intermetallic alloy, long-range-ordered alloy) is a type of metallic alloy that forms an ordered solid-state compound between two or more metallic elements. Inte ...
compounds such Ni3Al, Ni3Mo, Ni3Ti, etc. The semicoherent
precipitates In an aqueous solution, precipitation is the "sedimentation of a solid material (a precipitate) from a liquid solution". The solid formed is called the precipitate. In case of an inorganic chemical reaction leading to precipitation, the chemic ...
obtained during normal aging and incoherent precipitates obtained after
overaging Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and so ...
contribute to improvement of mechanical behavior by activating various strengthening mechanisms related to hindering of dislocation motion by precipitates. Strengthening mechanisms such as
precipitate hardening Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and so ...
where precipitates hinder dislocation motion via Orowan mechanism or dislocation bowing lead to increase in the ultimate tensile strength of maraging steels. Aging is also beneficial for reducing the microstructural heterogeneities which may occur due to non-uniform thermal distribution along the building direction in arc additive manufactured samples. * Laser Powder Bed Fusion (LPBF): Laser Powder Bed Fusion is an
additive manufacturing 3D printing, or additive manufacturing, is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer ...
technique used to create components of intricate geometries using a powder metal which is fused together layer by layer using localized high power-density heat source such as a
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
. The materials can be tailored to have specific mechanical properties by optimizing the process parameters associated with LPBF. It has been observed that processing parameters such as laser scanning speed, power and the scanning space can have significant effects on the mechanical properties of 300 maraging steel such as
tensile strength Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or F_\text in notation) is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials, the ultimate ...
,
microhardness Indentation hardness tests are used in mechanical engineering to determine the hardness of a material to deformation. Several such tests exist, wherein the examined material is indented until an impression is formed; these tests can be performed o ...
, and impact
toughness In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing.austenite Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 ...
reversion and disappearance of cellular microstructure. On the other hand, aging treatment after solution treatment increases the microhardness and tensile strength of steel which is attributed to formation of precipitates such as Ni3Mo, Ni3Ti, Fe2Mo. The impact toughness increases after solution treatment but decreases after aging treatment, which can be attributed to the underlying microstructure consisting of tiny precipitates acting as regions of stress concentrators for crack formation. Formation of nanoscale precipitates of
intermetallic An intermetallic (also called intermetallic compound, intermetallic alloy, ordered intermetallic alloy, long-range-ordered alloy) is a type of metallic alloy that forms an ordered solid-state compound between two or more metallic elements. Inte ...
compounds after aging process lead to marked increase in yield and ultimate tensile strength but substantial reduction in ductility of the material. This change in macroscopic behavior of the material can be linked to the evolution of microstructure from dimple to quasi-cleavage fracture morphology. Aging followed by solution treatment of selective laser melted steels also reduces the amount of retained austenite in the
martensitic Martensite is a very hard form of steel crystalline structure. It is named after German metallurgist Adolf Martens. By analogy the term can also refer to any crystal structure that is formed by diffusionless transformation. Properties Mart ...
matrix and lead to change in the grain orientation. Aging can reduce the plastic anisotropy to some extent, but directionality of properties is largely influenced by its fabrication history. *
Severe plastic deformation Severe plastic deformation (SPD) is a generic term describing a group of metalworking techniques — or more generally, solid-state mechanical processes — that involve very large strains typically involving a complex stress state or high shear, r ...
: It leads to increase in dislocation density in the materials which in turn assists in the ease of formation of intermetallic precipitates due to availability of faster diffusion pathways through the dislocation cores. It has been observed that plastic deformation before aging leads to reduced peak aging time and increase in peak hardness. Precipitate morphology in severely plastically deformed steel changes and becomes plate-like when overaged which is attributed to higher dislocation density. This in turn leads to significant reduction in ductility and increase in strength of the material. Along with morphology, the orientation of precipitates also play an important role in micromechanism of deformation as they induce
anisotropy Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit ve ...
to the mechanical properties.


Uses

Maraging steel's strength and malleability in the pre-aged stage allows it to be formed into thinner rocket and missile skins than other steels, reducing weight for a given strength. Maraging steels have very stable properties and, even after overaging due to excessive temperature, only soften slightly. These alloys retain their properties at mildly elevated
operating temperature An operating temperature is the allowable temperature range of the local ambient environment at which an electrical or mechanical device operates. The device will operate effectively within a specified temperature range which varies based on the de ...
s and have maximum service temperatures of over . They are suitable for engine components, such as crankshafts and gears, and the firing pins of automatic weapons that cycle from hot to cool repeatedly while under substantial load. Their uniform expansion and easy machinability before aging make maraging steel useful in high-wear components of
assembly line An assembly line, often called ''progressive assembly'', is a manufacturing process where the unfinished product moves in a direct line from workstation to workstation, with parts added in sequence until the final product is completed. By mechan ...
s and dies. Other ultra-high-strength steels, such as
AerMet AerMet alloy is an ultra-high strength type of martensitic alloy steel. The main alloying elements are cobalt and nickel, but chromium, molybdenum and carbon are also added. Its exceptional properties are hardness, tensile strength, fracture toughne ...
alloys, are not as machinable because of their carbide content. In the sport of
fencing Fencing is a combat sport that features sword fighting. It consists of three primary disciplines: Foil (fencing), foil, épée, and Sabre (fencing), sabre (also spelled ''saber''), each with its own blade and set of rules. Most competitive fe ...
, blades used in competitions run under the auspices of the
Fédération Internationale d'Escrime The International Fencing Federation (''Fédération Internationale d'Escrime'') commonly known by the acronym FIE, is the international Sport governing body, governing body of Olympic Games, Olympic fencing. Today, its head office is at th ...
are usually made with maraging steel. Maraging blades are superior for
foil Foil may refer to: Materials * Foil (metal), a quite thin sheet of metal, usually manufactured with a rolling mill machine * Metal leaf, a very thin sheet of decorative metal * Aluminium foil, a type of wrapping for food * Tin foil, metal foil ma ...
and
épée The (, ; ), also rendered as epee in English, is the largest and heaviest of the three weapons used in the sport of fencing. The modern derives from the 19th-century , a weapon which itself derives from the French small sword. This contains a ...
because crack propagation in maraging steel is 10 times slower than in carbon steel, resulting in less frequent breaking of the blade and fewer injuries. Stainless maraging steel is used in
bicycle A bicycle, also called a pedal cycle, bike, push-bike or cycle, is a human-powered transport, human-powered or motorized bicycle, motor-assisted, bicycle pedal, pedal-driven, single-track vehicle, with two bicycle wheel, wheels attached to a ...
frames (e.g. Reynolds 953 introduced in 2013) and
golf Golf is a club-and-ball sport in which players use various Golf club, clubs to hit a Golf ball, ball into a series of holes on a golf course, course in as few strokes as possible. Golf, unlike most ball games, cannot and does not use a standa ...
club heads. It is also used in surgical components and hypodermic syringes, but is not suitable for scalpel blades because the lack of carbon prevents it from holding a good cutting edge. Maraging steel is used in oil and gas sector as downhole tools and components due to its high mechanical strength. The steel's resistance to
hydrogen embrittlement Hydrogen embrittlement (HE), also known as hydrogen-assisted cracking or hydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can Permeation, permeate solid metals. O ...
is critical in downhole environments where exposure to hydrogen sulfide (H₂S) can lead to material degradation and failure. American musical instrument string producer
Ernie Ball Ernie Ball (born Roland Sherwood Ball; August 30, 1930 – September 9, 2004) was an American entrepreneur and musician who developed guitar-related products. Ball began as a club and local television musician and entrepreneur, building an inter ...
has made a specialist type of
electric guitar An electric guitar is a guitar that requires external electric Guitar amplifier, sound amplification in order to be heard at typical performance volumes, unlike a standard acoustic guitar. It uses one or more pickup (music technology), pickups ...
string String or strings may refer to: *String (structure), a long flexible structure made from threads twisted together, which is used to tie, bind, or hang other objects Arts, entertainment, and media Films * ''Strings'' (1991 film), a Canadian anim ...
out of maraging steel, claiming that this alloy provides more output and enhanced tonal response. The production, import, and export of maraging steels by certain entities, such as the United States, is closely monitored by international authorities because it is particularly suited for use in
gas centrifuge A gas centrifuge is a device that performs isotope separation of gases. A centrifuge relies on the principles of centrifugal force accelerating molecules so that particles of different masses are physically separated in a gradient along the radiu ...
s for
uranium enrichment Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (23 ...
; lack of maraging steel significantly hampers the uranium-enrichment process. Older centrifuges used aluminum tubes, while modern ones use carbon fiber composite.


Physical properties

*
Density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
: 8.1 g/cm3 (0.29 lb/in3) *
Specific heat In thermodynamics, the specific heat capacity (symbol ) of a substance is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. It is also referred to as massic heat ...
, mean for 0–100 °C (32–212 °F): 452 J/kg·K (0.108 Btu/lb·°F) *
Melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state of matter, state from solid to liquid. At the melting point the solid and liquid phase (matter), phase exist in Thermodynamic equilib ...
: *
Thermal conductivity The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1. Heat transfer occurs at a lower rate in materials of low ...
: 25.5 W/m·K * Mean
coefficient of thermal expansion Thermal expansion is the tendency of matter to increase in length, area, or volume, changing its size and density, in response to an increase in temperature (usually excluding phase transitions). Substances usually contract with decreasing temp ...
: 11.3×10−6 K−1 (20.3×10−6 °F−1) * Yield tensile strength: typically * Ultimate
tensile strength Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or F_\text in notation) is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials, the ultimate ...
: typically . Grades exist up to * Elongation at break: up to 15% * KIC fracture toughness: up to 175 MPa·m *
Young's modulus Young's modulus (or the Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Youn ...
: *
Shear modulus In materials science, shear modulus or modulus of rigidity, denoted by ''G'', or sometimes ''S'' or ''μ'', is a measure of the Elasticity (physics), elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear s ...
: *
Bulk modulus The bulk modulus (K or B or k) of a substance is a measure of the resistance of a substance to bulk compression. It is defined as the ratio of the infinitesimal pressure increase to the resulting ''relative'' decrease of the volume. Other mo ...
: *
Hardness In materials science, hardness (antonym: softness) is a measure of the resistance to plastic deformation, such as an indentation (over an area) or a scratch (linear), induced mechanically either by Pressing (metalworking), pressing or abrasion ...
(aged): 50 HRC (grade 250); 54 HRC (grade 300); 58 HRC (grade 350)


See also

*
Aermet AerMet alloy is an ultra-high strength type of martensitic alloy steel. The main alloying elements are cobalt and nickel, but chromium, molybdenum and carbon are also added. Its exceptional properties are hardness, tensile strength, fracture toughne ...
*
USAF-96 USAF-96 is a high-strength, high-performance, low-alloy, low-cost steel, developed for new generation of bunker buster type bombs, e.g. the Massive Ordnance Penetrator and the improved version of the GBU-28 bomb known as EGBU-28. It was developed ...
and
Eglin steel Eglin steel (ES-1) is a high-strength, high-performance, low-alloy, low-cost steel, developed for a new generation of bunker buster type bombs, e.g. the Massive Ordnance Penetrator and the improved version of the GBU-28 bomb known as EGBU-28. It ...
(Inexpensive maraging steels with less nickel and other expensive materials.)


References


External links


Maraging steel data sheets
{{Webarchive, url=https://web.archive.org/web/20160815131638/http://www.matthey.ch/en/alloys/maraging-steels-durnico-durimphy-ultrafort-durinox-phynox , date=2016-08-15 Steels