HOME

TheInfoList



OR:

In
solid state physics Solid-state physics is the study of rigid matter, or solids, through methods such as solid-state chemistry, quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state p ...
, a charge carrier is a
particle In the physical sciences, a particle (or corpuscle in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from s ...
or quasiparticle that is free to move, carrying an
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
, especially the particles that carry electric charges in
electrical conductor In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. The flow of negatively c ...
s. Examples are
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s, ions and holes. In a conducting medium, an
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
can exert force on these free particles, causing a net motion of the particles through the medium; this is what constitutes an
electric current An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge c ...
. The
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
and the
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
are the elementary charge carriers, each carrying one
elementary charge The elementary charge, usually denoted by , is a fundamental physical constant, defined as the electric charge carried by a single proton (+1 ''e'') or, equivalently, the magnitude of the negative electric charge carried by a single electron, ...
(''e''), of the same magnitude and opposite sign.


In conductors

In conducting mediums, particles serve to carry charge. In many
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
s, the charge carriers are
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s. One or two of the valence electrons from each atom are able to move about freely within the
crystal structure In crystallography, crystal structure is a description of ordered arrangement of atoms, ions, or molecules in a crystalline material. Ordered structures occur from intrinsic nature of constituent particles to form symmetric patterns that repeat ...
of the metal. The free electrons are referred to as conduction electrons, and the cloud of free electrons is called a Fermi gas. Many metals have electron and hole bands. In some, the majority carriers are holes. In
electrolytes An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble salts, acids, and bases, dissolved in a polar solvent like water. Upon dissolving, t ...
, such as salt water, the charge carriers are ions, which are atoms or molecules that have gained or lost electrons so they are electrically charged. Atoms that have gained electrons so they are negatively charged are called
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
s, atoms that have lost electrons so they are positively charged are called
cation An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
s. Cations and anions of the dissociated liquid also serve as charge carriers in melted ionic solids (see e.g. the
Hall–Héroult process The Hall–Héroult process is the major industrial process for smelting aluminium. It involves dissolving aluminium oxide (alumina) (obtained most often from bauxite, aluminium's chief ore, through the Bayer process) in molten cryolite and e ...
for an example of electrolysis of a melted ionic solid). Proton conductors are electrolytic conductors employing positive hydrogen ions as carriers. In a plasma, an electrically charged gas which is found in
electric arc An electric arc (or arc discharge) is an electrical breakdown of a gas that produces a prolonged electrical discharge. The electric current, current through a normally Electrical conductance, nonconductive medium such as air produces a plasma ( ...
s through air, neon signs, and the sun and stars, the electrons and cations of ionized gas act as charge carriers. In a
vacuum A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
, free electrons can act as charge carriers. In the electronic component known as the
vacuum tube A vacuum tube, electron tube, thermionic valve (British usage), or tube (North America) is a device that controls electric current flow in a high vacuum between electrodes to which an electric voltage, potential difference has been applied. It ...
(also called ''valve''), the mobile electron cloud is generated by a heated metal
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device such as a lead-acid battery. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. Conventional curren ...
, by a process called thermionic emission. When an electric field is applied strongly enough to draw the electrons into a beam, this may be referred to as a
cathode ray Cathode rays are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to electrons emitted from the c ...
, and is the basis of the
cathode-ray tube A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms on an oscilloscope, a ...
display widely used in televisions and computer monitors until the 2000s. In
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
s, which are the materials used to make electronic components like
transistor A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
s and
integrated circuit An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
s, two types of charge carrier are possible. In p-type semiconductors, " effective particles" known as electron holes with positive charge move through the crystal lattice, producing an electric current. The "holes" are, in effect, electron vacancies in the valence-band electron population of the semiconductor and are treated as charge carriers because they are mobile, moving from atom site to atom site. In n-type semiconductors, electrons in the conduction band move through the crystal, resulting in an electric current. In some conductors, such as ionic solutions and plasmas, positive and negative charge carriers coexist, so in these cases an electric current consists of the two types of carrier moving in opposite directions. In other conductors, such as metals, there are only charge carriers of one polarity, so an electric current in them simply consists of charge carriers moving in one direction.


In semiconductors

There are two recognized types of charge carriers in
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
s. One is
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s, which carry a negative
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
. In addition, it is convenient to treat the traveling vacancies in the valence band electron population ( holes) as a second type of charge carrier, which carry a positive charge equal in magnitude to that of an electron.


Carrier generation and recombination

When an electron meets with a hole, they recombine and these free carriers effectively vanish. The energy released can be either thermal, heating up the semiconductor (''thermal recombination'', one of the sources of waste heat in semiconductors), or released as
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s (''optical recombination'', used in LEDs and semiconductor lasers). The recombination means an electron which has been excited from the valence band to the conduction band falls back to the empty state in the valence band, known as the holes. The holes are the empty states created in the valence band when an electron gets excited after getting some energy to pass the energy gap.


Majority and minority carriers

The more abundant charge carriers are called majority carriers, which are primarily responsible for current transport in a piece of semiconductor. In n-type semiconductors they are electrons, while in p-type semiconductors they are holes. The less abundant charge carriers are called minority carriers; in n-type semiconductors they are holes, while in p-type semiconductors they are electrons. The concentration of holes and electrons in a doped semiconductor is governed by the mass action law. In an intrinsic semiconductor, which does not contain any impurity, the concentrations of both types of carriers are ideally equal. If an intrinsic semiconductor is doped with a donor impurity then the majority carriers are electrons. If the semiconductor is doped with an acceptor impurity then the majority carriers are holes. Minority carriers play an important role in bipolar transistors and
solar cell A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
s. Their role in
field-effect transistor The field-effect transistor (FET) is a type of transistor that uses an electric field to control the current through a semiconductor. It comes in two types: junction FET (JFET) and metal-oxide-semiconductor FET (MOSFET). FETs have three termi ...
s (FETs) is a bit more complex: for example, a
MOSFET upright=1.3, Two power MOSFETs in amperes">A in the ''on'' state, dissipating up to about 100 watt">W and controlling a load of over 2000 W. A matchstick is pictured for scale. In electronics, the metal–oxide–semiconductor field- ...
has p-type and n-type regions. The transistor action involves the majority carriers of the source and drain regions, but these carriers traverse the body of the opposite type, where they are minority carriers. However, the traversing carriers hugely outnumber their opposite type in the transfer region (in fact, the opposite type carriers are removed by an applied electric field that creates an inversion layer), so conventionally the source and drain designation for the carriers is adopted, and FETs are called "majority carrier" devices.


Free carrier concentration

''Free carrier concentration'' is the
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', '' molar concentration'', '' number concentration'', ...
of free carriers in a doped semiconductor. It is similar to the carrier concentration in a metal and for the purposes of calculating currents or drift velocities can be used in the same way. Free carriers are electrons ( holes) that have been introduced into the conduction band ( valence band) by doping. Therefore, they will not act as double carriers by leaving behind holes (electrons) in the other band. In other words, charge carriers are particles that are free to move, carrying the charge. The free carrier concentration of doped semiconductors shows a characteristic temperature dependence.


In superconductors

Superconductors Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases ...
have zero electrical resistance and are therefore able to carry current indefinitely. This type of conduction is possible by the formation of Cooper pairs. At present, superconductors can only be achieved at very low temperatures, for instance by using cryogenic chilling. As yet, achieving superconductivity at room temperature remains challenging; it is still a field of ongoing research and experimentation. Creating a superconductor that functions at ambient temperature would constitute an important technological break-through, which could potentially contribute to much higher energy efficiency in grid distribution of electricity.


In quantum situations

Under exceptional circumstances, positrons, muons, anti-muons, taus and anti-taus may potentially also carry electric charge. This is theoretically possible, yet the very short life-time of these charged particles would render such a current very challenging to maintain at the current state of technology. It might be possible to artificially create this type of current, or it might occur in nature during very short lapses of time.


In plasmas

Plasmas consist of ionized gas. Electric charge can cause the formation of electromagnetic fields in plasmas, which can lead to the formation of currents or even multiple currents. This phenomenon is used in
nuclear fusion Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
reactors. It also occurs naturally in the cosmos, in the form of jets, nebula winds or cosmic filaments that carry charged particles. This cosmic phenomenon is called Birkeland current. Considered in general, the electric conductivity of plasmas is a subject of
plasma physics Plasma () is a state of matter characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, mostly in stars (including th ...
.


See also

* Carrier lifetime *
Free charge Free may refer to: Concept * Freedom, the ability to act or change without constraint or restriction * Emancipate, attaining civil and political rights or equality * Free (''gratis''), free of charge * Gratis versus libre, the difference betw ...
*
Molecular diffusion Molecular diffusion is the motion of atoms, molecules, or other particles of a gas or liquid at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid, size and density (or their product, ...


References

{{DEFAULTSORT:Charge Carrier Particle physics