Major Histocompatibility Complex
   HOME

TheInfoList



OR:

The major histocompatibility complex (MHC) is a large locus on vertebrate DNA containing a set of closely linked polymorphic genes that code for cell surface proteins essential for the
adaptive immune system The adaptive immune system (AIS), also known as the acquired immune system, or specific immune system is a subsystem of the immune system that is composed of specialized cells, organs, and processes that eliminate pathogens specifically. The ac ...
. These cell surface proteins are called MHC molecules. Its name comes from its discovery during the study of transplanted tissue compatibility. Later studies revealed that tissue rejection due to incompatibility is only a facet of the full function of MHC molecules, which is to bind an
antigen In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. ...
derived from self-proteins, or from pathogens, and bring the antigen presentation to the cell surface for recognition by the appropriate
T-cells T cells (also known as T lymphocytes) are an important part of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell ...
. MHC molecules mediate the interactions of
leukocytes White blood cells (scientific name leukocytes), also called immune cells or immunocytes, are cells of the immune system that are involved in protecting the body against both infectious disease and foreign entities. White blood cells are genera ...
, also called
white blood cells White blood cells (scientific name leukocytes), also called immune cells or immunocytes, are cells of the immune system that are involved in protecting the body against both infectious disease and foreign entities. White blood cells are genera ...
(WBCs), with other leukocytes or with body cells. The MHC determines donor compatibility for
organ transplant Organ transplantation is a medical procedure in which an organ (anatomy), organ is removed from one body and placed in the body of a recipient, to replace a damaged or missing organ. The donor and recipient may be at the same location, or org ...
, as well as one's susceptibility to
autoimmune disease An autoimmune disease is a condition that results from an anomalous response of the adaptive immune system, wherein it mistakenly targets and attacks healthy, functioning parts of the body as if they were foreign organisms. It is estimated tha ...
s. In a cell,
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
molecules of the host's own
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology (physical form and structure), its developmental processes, its biochemical and physiological propert ...
or of other biologic entities are continually synthesized and degraded. Each MHC molecule on the cell surface displays a small peptide (a molecular fraction of a protein) called an
epitope An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells. The part of an antibody that binds to the epitope is called a paratope. Although e ...
. The presented self-antigens prevent an
organism An organism is any life, living thing that functions as an individual. Such a definition raises more problems than it solves, not least because the concept of an individual is also difficult. Many criteria, few of them widely accepted, have be ...
's
immune system The immune system is a network of biological systems that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to bacteria, as well as Tumor immunology, cancer cells, Parasitic worm, parasitic ...
from targeting its own cells. The presentation of pathogen-derived proteins results in the elimination of the infected cell by the immune system. Diversity of an individual's self-antigen presentation, mediated by MHC self-antigens, is attained in at least three ways: (1) an organism's MHC repertoire is
polygenic A polygene is a member of a group of non- epistatic genes that interact additively to influence a phenotypic trait, thus contributing to multiple-gene inheritance (polygenic inheritance, multigenic inheritance, quantitative inheritance), a type ...
(via multiple, interacting genes); (2) MHC expression is codominant (from both sets of inherited
alleles An allele is a variant of the sequence of nucleotides at a particular location, or locus, on a DNA molecule. Alleles can differ at a single position through single nucleotide polymorphisms (SNP), but they can also have insertions and deletions ...
); (3) MHC gene variants are highly polymorphic (diversely varying from organism to organism within a
species A species () is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of Taxonomy (biology), ...
).
Sexual selection Sexual selection is a mechanism of evolution in which members of one sex mate choice, choose mates of the other sex to mating, mate with (intersexual selection), and compete with members of the same sex for access to members of the opposite sex ...
has been observed in male mice choosing to mate with females with different MHCs. Also, at least for MHC I presentation, there has been evidence of antigenic peptide splicing, which can combine peptides from different proteins, vastly increasing antigen diversity.


Discovery

The first descriptions of the MHC were made by British immunologist Peter Gorer in 1936. MHC genes were first identified in inbred mice strains.
Clarence Little Clarence Cook Little (October 6, 1888 – December 22, 1971) was an American genetics, cancer, and tobacco researcher and academic administrator, as well as a proponent of eugenics. Early life C. C. Little was born in Brookline, Massachusetts ...
transplanted tumors across different strains and found rejection of transplanted tumors according to strains of host versus donor. George Snell selectively bred two mouse strains, attained a new strain nearly identical to one of the progenitor strains, but differing crucially in
histocompatibility Histocompatibility, or tissue compatibility, is the property of having the same, or sufficiently similar, alleles of a set of genes called human leukocyte antigens (HLA), or major histocompatibility complex (MHC). Each individual expresses many uni ...
—that is, tissue compatibility upon transplantation—and thereupon identified an MHC locus. Later Jean Dausset demonstrated the existence of MHC genes in humans and described the first human leucocyte antigen, the protein which we call now HLA-A2. Some years later  Baruj Benacerraf showed that polymorphic MHC genes not only determine an individual's unique constitution of antigens but also regulate the interaction among the various cells of the immunological system. These three scientists have been awarded the 1980 Nobel Prize in Physiology or Medicine for their discoveries concerning “genetically determined structures on the cell surface that regulate immunological reactions”. The first fully sequenced and annotated MHC was published for humans in 1999 by a consortium of sequencing centers from the UK, USA and Japan in ''Nature''. It was a "virtual MHC" since it was a mosaic from different individuals. A much shorter MHC locus from chickens was published in the same issue of ''Nature''. Many other species have been sequenced and the evolution of the MHC was studied, e.g. in the gray short-tailed
opossum Opossums () are members of the marsupial order Didelphimorphia () endemic to the Americas. The largest order of marsupials in the Western Hemisphere, it comprises 126 species in 18 genera. Opossums originated in South America and entered North A ...
('' Monodelphis domestica''), a
marsupial Marsupials are a diverse group of mammals belonging to the infraclass Marsupialia. They are natively found in Australasia, Wallacea, and the Americas. One of marsupials' unique features is their reproductive strategy: the young are born in a r ...
, MHC spans 3.95 Mb, yielding 114 genes, 87 shared with humans. Marsupial MHC genotypic variation lies between eutherian mammals and
bird Birds are a group of warm-blooded vertebrates constituting the class (biology), class Aves (), characterised by feathers, toothless beaked jaws, the Oviparity, laying of Eggshell, hard-shelled eggs, a high Metabolism, metabolic rate, a fou ...
s, taken as the minimal MHC encoding, but is closer in organization to that of non
mammals A mammal () is a vertebrate animal of the class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three middle e ...
. The IPD-MHC Database was created which provides a centralised repository for sequences of the Major Histocompatibility Complex (MHC) from a number of different species. As of the release on December 19, 2019, the database contains information on 77 species.


Genes

The MHC locus is present in all jawed vertebrates; it is assumed to have arisen about 450 million years ago. Despite the difference in the number of genes included in the MHC of different species, the overall organization of the locus is rather similar. Usual MHC contains about a hundred genes and pseudogenes, not all of which are involved in immunity. In
human Humans (''Homo sapiens'') or modern humans are the most common and widespread species of primate, and the last surviving species of the genus ''Homo''. They are Hominidae, great apes characterized by their Prehistory of nakedness and clothing ...
s, the MHC region occurs on
chromosome 6 Chromosome 6 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 6 spans nearly 171 million base pairs (the building material of DNA) and represents between 5.5 and 6% of the total DNA i ...
, between the flanking
genetic marker A genetic marker is a gene or DNA sequence with a known location on a chromosome that can be used to identify individuals or species. It can be described as a variation (which may arise due to mutation or alteration in the genomic loci) that can ...
s '' MOG'' and '' COL11A2'' (from 6p22.1 to 6p21.3 about 29Mb to 33Mb on the hg38 assembly), and contains 224 genes spanning 3.6 mega
base pairs A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA ...
(3 600 000 bases). About half have known immune functions. The
human Humans (''Homo sapiens'') or modern humans are the most common and widespread species of primate, and the last surviving species of the genus ''Homo''. They are Hominidae, great apes characterized by their Prehistory of nakedness and clothing ...
MHC is also called the HLA (
human leukocyte antigen The human leukocyte antigen (HLA) system is a complex of genes on chromosome 6 in humans that encode cell-surface proteins responsible for regulation of the immune system. The HLA system is also known as the human version of the major histo ...
) complex (often just the HLA). Similarly, there is SLA (Swine leukocyte antigens), BoLA (Bovine leukocyte antigens), DLA for dogs, etc. However, historically, the MHC in
mice A mouse (: mice) is a small rodent. Characteristically, mice are known to have a pointed snout, small rounded ears, a body-length scaly tail, and a high breeding rate. The best known mouse species is the common house mouse (''Mus musculus' ...
is called the Histocompatibility system 2 or just the H-2, whereas it has been referred to as the RT1 complex in rats, and the B locus in chickens. The MHC gene family is divided into three subgroups:
MHC class I MHC class I molecules are one of two primary classes of major histocompatibility complex (MHC) molecules (the other being MHC class II) and are found on the cell surface of all nucleated cells in the bodies of vertebrates. They also occur on ...
,
MHC class II MHC Class II molecules are a class of major histocompatibility complex (MHC) molecules normally found only on professional antigen-presenting cells such as dendritic cells, macrophages, some endothelial cells, thymic epithelial cells, and B cell ...
, and
MHC class III MHC class III is a group of proteins belonging the class of major histocompatibility complex (MHC). Unlike other MHC types such as MHC class I and MHC class II, of which their structure and functions in immune response are well defined, MHC class I ...
. Among all those genes present in MHC, there are two types of genes coding for the proteins
MHC class I MHC class I molecules are one of two primary classes of major histocompatibility complex (MHC) molecules (the other being MHC class II) and are found on the cell surface of all nucleated cells in the bodies of vertebrates. They also occur on ...
molecules and
MHC class II MHC Class II molecules are a class of major histocompatibility complex (MHC) molecules normally found only on professional antigen-presenting cells such as dendritic cells, macrophages, some endothelial cells, thymic epithelial cells, and B cell ...
molecules that are directly involved in the
antigen presentation Antigen presentation is a vital immune process that is essential for T cell immune response triggering. Because T cells recognize only fragmented antigens displayed on cell surfaces, antigen processing must occur before the antigen fragment can ...
. These genes are highly polymorphic, 19031 alleles of class I HLA, and 7183 of class II HLA are deposited for human in the IMGT database.


Proteins


MHC class I

MHC class I MHC class I molecules are one of two primary classes of major histocompatibility complex (MHC) molecules (the other being MHC class II) and are found on the cell surface of all nucleated cells in the bodies of vertebrates. They also occur on ...
molecules are expressed in all
nucleated The cell nucleus (; : nuclei) is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have no nuclei, and a few others including osteo ...
cells and also in
platelet Platelets or thrombocytes () are a part of blood whose function (along with the coagulation#Coagulation factors, coagulation factors) is to react to bleeding from blood vessel injury by clumping to form a thrombus, blood clot. Platelets have no ...
s—in essence all cells but
red blood cell Red blood cells (RBCs), referred to as erythrocytes (, with -''cyte'' translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood cel ...
s. It presents epitopes to killer
T cell T cells (also known as T lymphocytes) are an important part of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell ...
s, also called cytotoxic T lymphocytes (CTLs). A CTL expresses CD8 receptors, in addition to
T-cell receptor The T-cell receptor (TCR) is a protein complex, located on the surface of T cells (also called T lymphocytes). They are responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. ...
s (TCRs). When a CTL's CD8 receptor docks to a MHC class I molecule, if the CTL's TCR fits the epitope within the MHC class I molecule, the CTL triggers the cell to undergo programmed cell death by
apoptosis Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
. Thus, MHC class I helps mediate
cellular immunity Cellular may refer to: *Cellular automaton, a model in discrete mathematics *Cell biology, the evaluation of cells work and more * ''Cellular'' (film), a 2004 movie *Cellular frequencies, assigned to networks operating in cellular RF bands *Cellu ...
, a primary means to address intracellular pathogens, such as
virus A virus is a submicroscopic infectious agent that replicates only inside the living Cell (biology), cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Viruses are ...
es and some
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
, including bacterial L forms, bacterial
genus Genus (; : genera ) is a taxonomic rank above species and below family (taxonomy), family as used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In bino ...
''
Mycoplasma ''Mycoplasma'' is a genus of bacteria that, like the other members of the class ''Mollicutes'', lack a cell wall, and its peptidoglycan, around their cell membrane. The absence of peptidoglycan makes them naturally resistant to antibiotics ...
'', and bacterial genus ''
Rickettsia ''Rickettsia'' is a genus of nonmotile, gram-negative, nonspore-forming, highly pleomorphic bacteria that may occur in the forms of cocci (0.1 μm in diameter), bacilli (1–4 μm long), or threads (up to about 10 μm long). The genus was n ...
''. In humans, MHC class I comprises
HLA-A HLA-A is a group of human leukocyte antigens (HLA) that are encoded by the ''HLA-A'' locus (genetics), locus, which is located at human chromosome 6p21.3. HLA is a major histocompatibility complex (MHC) antigen specific to humans. HLA-A is one o ...
,
HLA-B HLA-B (major histocompatibility complex, class I, B) is a human gene that provides instructions for making a protein that plays a critical role in the immune system. HLA-B is part of a family of genes called the human leukocyte antigen (HLA) comp ...
, and HLA-C molecules. The first crystal structure of Class I MHC molecule, human HLA-A2, was published in 1989. The structure revealed that MHC-I molecules are
heterodimers In biochemistry, a protein dimer is a macromolecular complex or multimer formed by two protein monomers, or single proteins, which are usually non-covalently bound. Many macromolecules, such as proteins or nucleic acids, form dimers. The word ...
. They have a polymorphic heavy α-subunit whose gene occurs inside the MHC locus and small invariant β2 microglobulin subunit whose gene is usually located outside of it. Polymorphic heavy chain of MHC-I molecule contains N-terminal extra-cellular region composed by three domains, α1, α2, and α3, transmembrane helix to hold MHC-I molecule on the cell surface and short cytoplasmic tail. Two domains, α1 and α2, form deep peptide-binding groove between two long α-helices and the floor of the groove formed by eight β-strands. Immunoglobulin-like domain α3 involved in the interaction with
CD8 CD8 (cluster of differentiation 8) is a transmembrane protein, transmembrane glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). Along with the TCR, the CD8 co-receptor plays a role in T cell Cell signaling, signaling and aid ...
co-receptor. β2 microglobulin provides stability of the complex and participates in the recognition of peptide-MHC class I complex by
CD8 CD8 (cluster of differentiation 8) is a transmembrane protein, transmembrane glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). Along with the TCR, the CD8 co-receptor plays a role in T cell Cell signaling, signaling and aid ...
co-receptor. The peptide is non-covalently bound to MHC-I, it is held by the several pockets on the floor of the peptide-binding groove. Amino acid side-chains that are most polymorphic in human alleles fill the central and widest portion of the binding groove, while conserved side-chains are clustered at the narrower ends of the groove. Classical MHC molecules present epitopes to the TCRs of CD8+ T lymphocytes. Nonclassical molecules (MHC class IB) exhibit limited polymorphism, expression patterns, and presented antigens; this group is subdivided into a group encoded within MHC loci (e.g., HLA-E, -F, -G), as well as those not (e.g., stress ligands such as ULBPs, Rae1, and H60); the antigen/ligand for many of these molecules remain unknown, but they can interact with each of CD8+ T cells, NKT cells, and NK cells. The oldest evolutionary nonclassical MHC class I lineage in humans was deduced to be the lineage that includes the CD1 and PROCR (also known as EPCR) molecules. This lineage may have been established before the origin of tetrapod species. However, the only nonclassical MHC class I lineage for which evidence exists that it was established before the evolutionary separation of Actinopterygii (ray-finned fish) and Sarcopterygii (lobe-finned fish plus tetrapods) is lineage Z of which members are found, together in each species with classical MHC class I, in lungfish and throughout ray-finned fishes; why the Z lineage was well conserved in ray-finned fish but lost in tetrapods is not understood.


MHC class II

MHC class II MHC Class II molecules are a class of major histocompatibility complex (MHC) molecules normally found only on professional antigen-presenting cells such as dendritic cells, macrophages, some endothelial cells, thymic epithelial cells, and B cell ...
can be conditionally expressed by all cell types, but normally occurs only on "professional"
antigen-presenting cells An antigen-presenting cell (APC) or accessory cell is a cell that displays an antigen bound by major histocompatibility complex (MHC) proteins on its surface; this process is known as antigen presentation. T cells may recognize these complexes u ...
(APCs):
macrophage Macrophages (; abbreviated MPhi, φ, MΦ or MP) are a type of white blood cell of the innate immune system that engulf and digest pathogens, such as cancer cells, microbes, cellular debris and foreign substances, which do not have proteins that ...
s,
B cell B cells, also known as B lymphocytes, are a type of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted or inserted into the plasm ...
s, and especially
dendritic cells A dendritic cell (DC) is an antigen-presenting cell (also known as an ''accessory cell'') of the mammalian immune system. A DC's main function is to process antigen material and present it on the cell surface to the T cells of the immune system ...
(DCs). An APC takes up an
antigenic In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. Anti ...
protein, performs antigen processing, and returns a molecular fraction of it—a fraction termed the
epitope An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells. The part of an antibody that binds to the epitope is called a paratope. Although e ...
—and displays it on the APC's surface coupled within an MHC class II molecule (
antigen presentation Antigen presentation is a vital immune process that is essential for T cell immune response triggering. Because T cells recognize only fragmented antigens displayed on cell surfaces, antigen processing must occur before the antigen fragment can ...
). On the cell's surface, the epitope can be recognized by immunologic structures like
T-cell receptor The T-cell receptor (TCR) is a protein complex, located on the surface of T cells (also called T lymphocytes). They are responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. ...
s (TCRs). The molecular region which binds to the epitope is the
paratope In immunology, a paratope, also known as an antigen-binding site, is the part of an antibody which recognizes and binds to an antigen. It is a small region at the tip of the antibody's antigen-binding fragment and contains parts of the antibody' ...
. On surfaces of helper T cells are CD4 receptors, as well as TCRs. When a naive helper T cell's CD4 molecule docks to an APC's MHC class II molecule, its TCR can meet and bind the epitope coupled within the MHC class II. This event primes the
naive T cell In immunology, a naive T cell (Th0 cell) is a T cell that has differentiated in the thymus, and successfully undergone the positive and negative processes of central selection in the thymus. Among these are the naive forms of helper T cells (CD4 ...
. According to the local milieu, that is, the balance of
cytokine Cytokines () are a broad and loose category of small proteins (~5–25 kDa) important in cell signaling. Cytokines are produced by a broad range of cells, including immune cells like macrophages, B cell, B lymphocytes, T cell, T lymphocytes ...
s secreted by APCs in the microenvironment, the naive
helper T cell The T helper cells (Th cells), also known as CD4+ cells or CD4-positive cells, are a type of T cell that play an important role in the adaptive immune system. They aid the activity of other immune cells by releasing cytokines. They are considere ...
(Th0) polarizes into either a memory Th cell or an effector Th cell of
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology (physical form and structure), its developmental processes, its biochemical and physiological propert ...
either type 1 (Th1), type 2 (Th2), type 17 (Th17), or regulatory/suppressor (Treg), as so far identified, the Th cell's terminal differentiation. MHC class II thus mediates immunization to—or, if APCs polarize Th0 cells principally to Treg cells,
immune tolerance Immune tolerance, also known as immunological tolerance or immunotolerance, refers to the immune system's state of unresponsiveness to substances or tissues that would otherwise trigger an immune response. It arises from prior exposure to a specif ...
of—an
antigen In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. ...
. The polarization during primary exposure to an antigen is key in determining a number of
chronic disease A chronic condition (also known as chronic disease or chronic illness) is a health condition or disease that is persistent or otherwise long-lasting in its effects or a disease that comes with time. The term ''chronic'' is often applied when the ...
s, such as inflammatory bowel diseases and
asthma Asthma is a common long-term inflammatory disease of the airways of the lungs. It is characterized by variable and recurring symptoms, reversible airflow obstruction, and easily triggered bronchospasms. Symptoms include episodes of wh ...
, by skewing the immune response that memory Th cells coordinate when their memory recall is triggered upon secondary exposure to similar antigens. B cells express MHC class II to present antigens to Th0, but when their
B cell receptor The B-cell receptor (BCR) is a transmembrane protein on the surface of a B cell. A B-cell receptor is composed of a membrane-bound immunoglobulin molecule and a signal transduction moiety. The former forms a type 1 transmembrane receptor protein, ...
s bind matching epitopes, interactions which are not mediated by MHC, these activated B cells secrete soluble immunoglobulins:
antibody An antibody (Ab) or immunoglobulin (Ig) is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as pathogenic bacteria, bacteria and viruses, includin ...
molecules mediating
humoral immunity Humoral immunity is the aspect of immunity (medical), immunity that is mediated by macromolecules – including secreted antibodies, complement proteins, and certain antimicrobial peptides – located in extracellular fluids. Humoral immunity is ...
. Class II MHC molecules are also heterodimers, genes for both α and β subunits are polymorphic and located within MHC class II subregion. The peptide-binding groove of MHC-II molecules is formed by the N-terminal domains of both subunits of the heterodimer, α1 and β1, unlike MHC-I molecules, where two domains of the same chain are involved. In addition, both subunits of MHC-II contain transmembrane helix and immunoglobulin domains α2 or β2 that can be recognized by
CD4 In molecular biology, CD4 (cluster of differentiation 4) is a glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). CD4 is found on the surface of immune cells such as helper T cells, monocytes, macrophages, and dendritic c ...
co-receptors. In this way, MHC molecules guide the type of lymphocytes that may bind to the given antigen with high affinity, as different lymphocytes express different T-Cell Receptor (TCR) co-receptors. MHC class II molecules in humans have five to six isotypes. Classical molecules present peptides to CD4+ lymphocytes. Nonclassical molecules, also known as accessories, have intracellular functions. They are not exposed on cell membranes, but are found in internal membranes, where they assist with the loading of antigenic peptides onto classic MHC class II molecules. The important nonclassical MHC class II molecule DM is only found from the evolutionary level of lungfish, although also in more primitive fishes both classical and nonclassical MHC class II are found.


MHC class III

Unlike classes I and II, Class III molecules have physiological roles and are encoded between classes I and II on the short arm of human chromosome 6. Class III molecules include several secreted proteins with immune functions: components of the
complement system The complement system, also known as complement cascade, is a part of the humoral, innate immune system and enhances (complements) the ability of antibodies and phagocytic cells to clear microbes and damaged cells from an organism, promote inf ...
(such as C2, C4, and B factor), cytokines (such as TNF-α, LTA, and LTB), and
heat shock protein Heat shock proteins (HSPs) are a family of proteins produced by cells in response to exposure to stressful conditions. They were first described in relation to heat shock, but are now known to also be expressed during other stresses including ex ...
s.


Function

MHC is the tissue-antigen that allows the immune system (more specifically T cells) to bind to, recognize, and tolerate itself (autorecognition). MHC is also the chaperone for intracellular peptides that are complexed with MHCs and presented to
T cell receptor The T-cell receptor (TCR) is a protein complex, located on the surface of T cells (also called T lymphocytes). They are responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. ...
s (TCRs) as potential foreign antigens. MHC interacts with TCR and its co-receptors to optimize binding conditions for the TCR-antigen interaction, in terms of antigen binding affinity and specificity, and signal transduction effectiveness. Essentially, the MHC-peptide complex is a complex of auto-antigen/allo-antigen. Upon binding, T cells should in principle tolerate the auto-antigen, but activate when exposed to the allo-antigen. Disease states occur when this principle is disrupted.
Antigen presentation Antigen presentation is a vital immune process that is essential for T cell immune response triggering. Because T cells recognize only fragmented antigens displayed on cell surfaces, antigen processing must occur before the antigen fragment can ...
: MHC molecules bind to both
T cell receptor The T-cell receptor (TCR) is a protein complex, located on the surface of T cells (also called T lymphocytes). They are responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. ...
and
CD4 In molecular biology, CD4 (cluster of differentiation 4) is a glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). CD4 is found on the surface of immune cells such as helper T cells, monocytes, macrophages, and dendritic c ...
/
CD8 CD8 (cluster of differentiation 8) is a transmembrane protein, transmembrane glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). Along with the TCR, the CD8 co-receptor plays a role in T cell Cell signaling, signaling and aid ...
co-receptors on
T lymphocytes T cells (also known as T lymphocytes) are an important part of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes A lymphocyte is a type of white blood cell (leukoc ...
, and the antigen
epitope An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells. The part of an antibody that binds to the epitope is called a paratope. Although e ...
held in the peptide-binding groove of the MHC molecule interacts with the variable Ig-Like domain of the TCR to trigger T-cell activation Autoimmune reaction: The presence of certain MHC molecules can increase the risk of autoimmune diseases more than others. HLA-B27 is an example. It is unclear how exactly having the HLA-B27 tissue type increases the risk of
ankylosing spondylitis Ankylosing spondylitis (AS) is a type of arthritis from the disease spectrum of axial spondyloarthritis. It is characterized by long-term inflammation of the joints of the spine, typically where the spine joins the pelvis. With AS, eye and bow ...
and other associated inflammatory diseases, but mechanisms involving aberrant antigen presentation or T cell activation have been hypothesized. Tissue allorecognition: MHC molecules in complex with peptide epitopes are essentially ligands for TCRs. T cells become activated by binding to the peptide-binding grooves of any MHC molecule that they were not trained to recognize during positive selection in the
thymus The thymus (: thymuses or thymi) is a specialized primary lymphoid organ of the immune system. Within the thymus, T cells mature. T cells are critical to the adaptive immune system, where the body adapts to specific foreign invaders. The thymus ...
.


Antigen processing and presentation

Peptides are processed and presented by two classical pathways: * In MHC class II,
phagocytes Phagocytes are cell (biology), cells that protect the body by ingesting harmful foreign particles, bacteria, and dead or Apoptosis, dying cells. Their name comes from the Greek language, Greek ', "to eat" or "devour", and "-cyte", the suffix in ...
such as
macrophages Macrophages (; abbreviated MPhi, φ, MΦ or MP) are a type of white blood cell of the innate immune system that engulf and digest pathogens, such as cancer cells, microbes, cellular debris and foreign substances, which do not have proteins that ...
and immature
dendritic cells A dendritic cell (DC) is an antigen-presenting cell (also known as an ''accessory cell'') of the mammalian immune system. A DC's main function is to process antigen material and present it on the cell surface to the T cells of the immune system ...
take up entities by
phagocytosis Phagocytosis () is the process by which a cell (biology), cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs ph ...
into phagosomes—though
B cells B cells, also known as B lymphocytes, are a type of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted or inserted into the plasm ...
exhibit the more general
endocytosis Endocytosis is a cellular process in which Chemical substance, substances are brought into the cell. The material to be internalized is surrounded by an area of cell membrane, which then buds off inside the cell to form a Vesicle (biology and chem ...
into
endosomes Endosomes are a collection of intracellular sorting organelles in eukaryotic cells. They are parts of the endocytic membrane transport pathway originating from the trans Golgi network. Molecules or ligands internalized from the plasma membra ...
—which fuse with
lysosomes A lysosome () is a membrane-bound organelle that is found in all mammalian cells, with the exception of red blood cells (erythrocytes). There are normally hundreds of lysosomes in the cytosol, where they function as the cell’s degradation cent ...
whose acidic enzymes cleave the uptaken protein into many different peptides. Via physicochemical dynamics in molecular interaction with the particular MHC class II variants borne by the host, encoded in the host's genome, a particular peptide exhibits immunodominance and loads onto MHC class II molecules. These are trafficked to and externalized on the cell surface. * In MHC class I, any nucleated cell normally presents cytosolic peptides, mostly self peptides derived from protein turnover and defective ribosomal products. During viral infection, intracellular microorganism infection, or cancerous transformation, such proteins degraded in the
proteosome Proteasomes are essential protein complexes responsible for the degradation of proteins by proteolysis, a chemical reaction that breaks peptide bonds. Enzymes that help such reactions are called proteases. Proteasomes are found inside all e ...
are as well loaded onto MHC class I molecules and displayed on the cell surface. T lymphocytes can detect a peptide displayed at 0.1–1% of the MHC molecules.


T lymphocyte recognition restrictions

In their development in the
thymus The thymus (: thymuses or thymi) is a specialized primary lymphoid organ of the immune system. Within the thymus, T cells mature. T cells are critical to the adaptive immune system, where the body adapts to specific foreign invaders. The thymus ...
, T lymphocytes are selected to recognize the host's own MHC molecules, but not other self antigens. Following selection, each T lymphocyte shows dual specificity: The TCR recognizes self MHC, but only non-self antigens. MHC restriction occurs during lymphocyte development in the thymus through a process known as positive selection. T cells that do not receive a positive survival signal — mediated mainly by thymic epithelial cells presenting self peptides bound to MHC molecules — to their TCR undergo apoptosis. Positive selection ensures that mature T cells can functionally recognize MHC molecules in the periphery (i.e. elsewhere in the body). The TCRs of T lymphocytes recognise only sequential epitopes, also called linear epitopes, of only peptides and only if coupled within an MHC molecule. (Antibody molecules secreted by activated B cells, though, recognize diverse epitopes—
peptide Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty am ...
,
lipid Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing ...
,
carbohydrate A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' ...
, and
nucleic acid Nucleic acids are large biomolecules that are crucial in all cells and viruses. They are composed of nucleotides, which are the monomer components: a pentose, 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nuclei ...
—and recognize conformational epitopes, which have
three-dimensional In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (''coordinates'') are required to determine the position (geometry), position of a point (geometry), poi ...
structure.)


In sexual mate selection

MHC molecules enable immune system surveillance of the population of protein molecules in a host cell, and greater MHC diversity permits greater diversity of
antigen presentation Antigen presentation is a vital immune process that is essential for T cell immune response triggering. Because T cells recognize only fragmented antigens displayed on cell surfaces, antigen processing must occur before the antigen fragment can ...
. In 1976, Yamazaki ''et al'' demonstrated a
sexual selection Sexual selection is a mechanism of evolution in which members of one sex mate choice, choose mates of the other sex to mating, mate with (intersexual selection), and compete with members of the same sex for access to members of the opposite sex ...
mate choice Mate choice is one of the primary mechanisms under which evolution can occur. It is characterized by a "selective response by animals to particular stimuli" which can be observed as behavior.Bateson, Paul Patrick Gordon. "Mate Choice." Mate Choi ...
by male mice for females of a different MHC. Similar results have been obtained with
fish A fish (: fish or fishes) is an aquatic animal, aquatic, Anamniotes, anamniotic, gill-bearing vertebrate animal with swimming fish fin, fins and craniate, a hard skull, but lacking limb (anatomy), limbs with digit (anatomy), digits. Fish can ...
. Some data find lower rates of
early pregnancy loss Early pregnancy loss is a medical term that when referring to humans can variously be used to mean: * Death of an embryo or fetus during the first trimester. This can happen by implantation failure, miscarriage, embryo resorption, early fetal ...
in human couples of dissimilar MHC genes. MHC may be related to mate choice in some human populations, a theory that found support by studies by Ober and colleagues in 1997, as well as by Chaix and colleagues in 2008. However, the latter findings have been controversial. If it exists, the phenomenon might be mediated by
olfaction The sense of smell, or olfaction, is the special sense through which smells (or odors) are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste. In humans, ...
, as MHC phenotype appears strongly involved in the strength and pleasantness of perceived odour of compounds from
sweat Perspiration, also known as sweat, is the fluid secreted by sweat glands in the skin of mammals. Two types of sweat glands can be found in humans: eccrine glands and Apocrine sweat gland, apocrine glands. The eccrine sweat glands are distribu ...
. Fatty acid
esters In chemistry, an ester is a chemical compound, compound derived from an acid (either organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group () of that acid is replaced by an organyl group (R). These compounds c ...
—such as methyl undecanoate, methyl decanoate, methyl nonanoate, methyl octanoate, and methyl hexanoate—show strong connection to MHC. In 1995, Claus Wedekind found that in a group of female college students who smelled T-shirts worn by male students for two nights (without deodorant, cologne, or scented soaps), the majority of women chose shirts worn by men of dissimilar MHCs, a preference reversed if the women were on oral contraceptives. In 2005 in a group of 58 subjects, women were more indecisive when presented with MHCs like their own, although with oral contraceptives, the women showed no particular preference. No studies show the extent to which odor preference determines mate selection (or vice versa).


Evolutionary diversity

Most
mammal A mammal () is a vertebrate animal of the Class (biology), class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three ...
s have MHC variants similar to those of humans, who bear great allelic diversity, especially among the nine classical genes—seemingly due largely to
gene duplication Gene duplication (or chromosomal duplication or gene amplification) is a major mechanism through which new genetic material is generated during molecular evolution. It can be defined as any duplication of a region of DNA that contains a gene ...
—though human MHC regions have many
pseudogene Pseudogenes are nonfunctional segments of DNA that resemble functional genes. Pseudogenes can be formed from both protein-coding genes and non-coding genes. In the case of protein-coding genes, most pseudogenes arise as superfluous copies of fun ...
s. The most diverse loci, namely HLA-A, HLA-B, and HLA-C, have roughly 6000, 7200, and 5800 known alleles, respectively. Many HLA alleles are ancient, sometimes of closer homology to a chimpanzee MHC alleles than to some other human alleles of the same gene. MHC allelic diversity has challenged
evolutionary biologists Evolutionary biology is the subfield of biology that studies the evolutionary processes such as natural selection, common descent, and speciation that produced the diversity of life on Earth. In the 1930s, the discipline of evolutionary bi ...
for explanation. Most posit
balancing selection Balancing selection refers to a number of selective processes by which multiple alleles (different versions of a gene) are actively maintained in the gene pool of a population at frequencies larger than expected from genetic drift alone. Balancing ...
(see
polymorphism (biology) In biology, polymorphism is the occurrence of two or more clearly different morphs or forms, also referred to as alternative '' phenotypes'', in the population of a species. To be classified as such, morphs must occupy the same habitat at the ...
), which is any
natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the Heredity, heritable traits characteristic of a population over generation ...
process whereby no single allele is absolutely most fit, such as
frequency-dependent selection Frequency-dependent selection is an evolutionary process by which the fitness (biology), fitness of a phenotype or genotype depends on the phenotype or genotype composition of a given population. * In positive frequency-dependent selection, the fit ...
and
heterozygote advantage A heterozygote advantage describes the case in which the heterozygous genotype has a higher relative fitness (biology), fitness than either the homozygous Dominance (genetics), dominant or homozygous recessive gene, recessive genotype. Loci exhib ...
. Pathogenic coevolution, as a type of balancing selection, posits that common alleles are under greatest pathogenic pressure, driving positive selection of uncommon alleles—moving targets, so to say, for pathogens. As pathogenic pressure on the previously common alleles decreases, their frequency in the population stabilizes, and remain circulating in a large population.
Genetic drift Genetic drift, also known as random genetic drift, allelic drift or the Wright effect, is the change in the Allele frequency, frequency of an existing gene variant (allele) in a population due to random chance. Genetic drift may cause gene va ...
is also a major driving force in some species. It is possible that the combined effects of some or all of these factors cause the genetic diversity. MHC diversity has also been suggested as a possible indicator for conservation, because large, stable populations tend to display greater MHC diversity than smaller, isolated populations. Small, fragmented populations that have experienced a
population bottleneck A population bottleneck or genetic bottleneck is a sharp reduction in the size of a population due to environmental events such as famines, earthquakes, floods, fires, disease, and droughts; or human activities such as genocide, speciocide, wid ...
typically have lower MHC diversity. For example, relatively low MHC diversity has been observed in the
cheetah The cheetah (''Acinonyx jubatus'') is a large Felidae, cat and the Fastest animals, fastest land animal. It has a tawny to creamy white or pale buff fur that is marked with evenly spaced, solid black spots. The head is small and rounded, wit ...
(''Acinonyx jubatus''),
Eurasian beaver The Eurasian beaver (''Castor fiber'') or European beaver is a species of beaver widespread across Eurasia, with a rapidly increasing population of at least 1.5 million in 2020. The Eurasian beaver was hunted to near-extinction for both its fur ...
(''Castor fiber''), and
giant panda The giant panda (''Ailuropoda melanoleuca''), also known as the panda bear or simply panda, is a bear species endemic to China. It is characterised by its white animal coat, coat with black patches around the eyes, ears, legs and shoulders. ...
(''Ailuropoda melanoleuca''). In 2007 low MHC diversity was attributed a role in disease susceptibility in the
Tasmanian devil The Tasmanian devil (''Sarcophilus harrisii''; palawa kani: ''purinina'') is a carnivorous marsupial of the family Dasyuridae. It was formerly present across mainland Australia, but became extinct there around 3,500 years ago; it is now con ...
(''Sarcophilus harrisii''), native to the isolated island of
Tasmania Tasmania (; palawa kani: ''Lutruwita'') is an island States and territories of Australia, state of Australia. It is located to the south of the Mainland Australia, Australian mainland, and is separated from it by the Bass Strait. The sta ...
, such that an antigen of a transmissible tumor, involved in
devil facial tumour disease Devil facial tumour disease (DFTD) is an aggressive non-viral clonally transmissible cancer which affects Tasmanian devils, a marsupial native to the Australian island of Tasmania. The cancer manifests itself as lumps of soft and ulcerating tis ...
, appears to be recognized as a ''self antigen''. To offset
inbreeding Inbreeding is the production of offspring from the mating or breeding of individuals or organisms that are closely genetic distance, related genetically. By analogy, the term is used in human reproduction, but more commonly refers to the genet ...
, efforts to sustain genetic diversity in populations of endangered species and of captive animals have been suggested. In ray-finned fish like rainbow trout, allelic polymorphism in MHC class II is reminiscent of that in mammals and predominantly maps to the peptide binding groove. However, in MHC class I of many teleost fishes, the allelic polymorphism is much more extreme than in mammals in the sense that the sequence identity levels between alleles can be very low and the variation extends far beyond the peptide binding groove. It has been speculated that this type of MHC class I allelic variation contributes to allograft rejection, which may be especially important in fish to avoid grafting of cancer cells through their mucosal skin. The MHC locus (6p21.3) has 3 other paralogous loci in the human genome, namely 19pl3.1, 9q33–q34, and 1q21–q25. It is believed that the loci arouse from the two-round duplications in
vertebrate Vertebrates () are animals with a vertebral column (backbone or spine), and a cranium, or skull. The vertebral column surrounds and protects the spinal cord, while the cranium protects the brain. The vertebrates make up the subphylum Vertebra ...
s of a single ProtoMHC locus, and the new domain organizations of the MHC genes were a result of later cis-duplication and exon shuffling in a process termed "the MHC Big Bang." Genes in this locus are apparently linked to intracellular
intrinsic immunity Intrinsic immunity refers to a set of cellular-based anti-viral defense mechanisms, notably genetically encoded proteins which specifically target eukaryotic retroviruses. Unlike adaptive and innate immunity effectors, intrinsic immune proteins ...
in the basal
Metazoan Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia (). With few exceptions, animals consume organic material, breathe oxygen, have myocytes and are able to move, can reproduce sexually, and grow from a ho ...
''
Trichoplax adhaerens ''Trichoplax adhaerens'' is one of the four named species in the phylum Placozoa. The others are ''Hoilungia hongkongensis'', ''Polyplacotoma mediterranea'' and ''Cladtertia collaboinventa''. Placozoa is a basal group of multicellular animals, p ...
''.


In transplant rejection

In a transplant procedure, as of an organ or
stem cells In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can change into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell ...
, MHC molecules themselves act as
antigen In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. ...
s and can provoke immune response in the recipient, thus causing transplant rejection. MHC molecules were identified and named after their role in transplant rejection between mice of different strains, though it took over 20 years to clarify MHC's role in presenting peptide antigens to cytotoxic T lymphocytes (CTLs). Each human cell expresses six MHC class I alleles (one HLA-A, -B, and -C allele from each parent) and six to eight MHC class II alleles (one HLA-DP and -DQ, and one or two HLA-DR from each parent, and combinations of these). The MHC variation in the human population is high, at least 350 alleles for HLA-A genes, 620 alleles for HLA-B, 400 alleles for DR, and 90 alleles for DQ. Any two individuals who are not identical twins, triplets, or higher order multiple births, will express differing MHC molecules. All MHC molecules can mediate transplant rejection, but HLA-C and HLA-DP, showing low polymorphism, seem least important. When maturing in the thymus, T lymphocytes are selected for their TCR incapacity to recognize self antigens, yet T lymphocytes can react against the donor MHC's peptide-binding groove, the variable region of MHC holding the presented antigen's epitope for recognition by TCR, the matching
paratope In immunology, a paratope, also known as an antigen-binding site, is the part of an antibody which recognizes and binds to an antigen. It is a small region at the tip of the antibody's antigen-binding fragment and contains parts of the antibody' ...
. T lymphocytes of the recipient take the incompatible peptide-binding groove as nonself antigen. There are various types of transplant rejection that are known to be mediated by MHC (HLA): * Hyperacute rejection occurs when, before the transplantation, the recipient has preformed anti-HLA antibodies, perhaps by previous blood transfusions (donor tissue that includes lymphocytes expressing HLA molecules), by anti-HLA generated during pregnancy (directed at the father's HLA displayed by the fetus), or by previous transplantation; * Acute cellular rejection occurs when the recipient's T lymphocytes are activated by the donor tissue, causing damage via mechanisms such as direct cytotoxicity from CD8 cells. * Acute humoral rejection and chronic disfunction occurs when the recipient's anti-HLA antibodies form directed at HLA molecules present on
endothelial cells The endothelium (: endothelia) is a single layer of squamous endothelial cells that line the interior surface of blood vessels and lymphatic vessels. The endothelium forms an interface between circulating blood or lymph in the lumen and the res ...
of the transplanted tissue. In all of the above situations, immunity is directed at the transplanted organ, sustaining lesions. A cross-reaction test between potential donor cells and recipient serum seeks to detect presence of preformed anti-HLA antibodies in the potential recipient that recognize donor HLA molecules, so as to prevent hyperacute rejection. In normal circumstances, compatibility between HLA-A, -B, and -DR molecules is assessed. The higher the number of incompatibilities, the lower the five-year survival rate. Global databases of donor information enhance the search for compatible donors. The involvement in allogeneic transplant rejection appears to be an ancient feature of MHC molecules, because also in fish associations between transplant rejections and (mis-)matching of MHC class I and MHC class II were observed.


HLA biology

Human MHC class I and II are also called
human leukocyte antigen The human leukocyte antigen (HLA) system is a complex of genes on chromosome 6 in humans that encode cell-surface proteins responsible for regulation of the immune system. The HLA system is also known as the human version of the major histo ...
(HLA). To clarify the usage, some of the biomedical literature uses HLA to refer specifically to the HLA protein molecules and reserves MHC for the region of the genome that encodes for this molecule, but this is not a consistent convention. The most studied HLA genes are the nine classical MHC genes: ''
HLA-A HLA-A is a group of human leukocyte antigens (HLA) that are encoded by the ''HLA-A'' locus (genetics), locus, which is located at human chromosome 6p21.3. HLA is a major histocompatibility complex (MHC) antigen specific to humans. HLA-A is one o ...
,
HLA-B HLA-B (major histocompatibility complex, class I, B) is a human gene that provides instructions for making a protein that plays a critical role in the immune system. HLA-B is part of a family of genes called the human leukocyte antigen (HLA) comp ...
, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA'', and '' HLA-DRB1''. In humans, the MHC gene cluster is divided into three regions: classes I, II, and III. The A, B and C genes belong to MHC class I, whereas the six D genes belong to class II. MHC alleles are expressed in codominant fashion. This means the
allele An allele is a variant of the sequence of nucleotides at a particular location, or Locus (genetics), locus, on a DNA molecule. Alleles can differ at a single position through Single-nucleotide polymorphism, single nucleotide polymorphisms (SNP), ...
s (variants) inherited from both parents are expressed equally: * Each person carries 2 alleles of each of the 3 class-I genes, (''HLA-A, HLA-B'' and ''HLA-C''), and so can express six different types of MHC-I (see figure). * In the class-II locus, each person inherits a pair of HLA-DP genes (DPA1 and DPB1, which encode α and β chains), a couple of genes'' HLA-DQ'' (''DQA1'' and ''DQB1'', for α and β chains), one gene ''HLA-DRα'' (''DRA1''), and one or more genes ''HLA-DRβ'' (''DRB1'' and ''DRB3, -4'' or ''-5''). That means that one
heterozygous Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism. Mos ...
individual can inherit six or eight functioning class-II alleles, three or more from each parent. The role of ''DQA2'' or ''DQB2'' is not verified. The ''DRB2, DRB6, DRB7, DRB8'' and ''DRB9'' are pseudogenes. The set of alleles that is present in each chromosome is called the MHC
haplotype A haplotype (haploid genotype) is a group of alleles in an organism that are inherited together from a single parent. Many organisms contain genetic material (DNA) which is inherited from two parents. Normally these organisms have their DNA orga ...
. In humans, each HLA allele is named with a number. For instance, for a given individual, his haplotype might be HLA-A2, HLA-B5, HLA-DR3, etc... Each heterozygous individual will have two MHC haplotypes, one each from the paternal and maternal chromosomes. The MHC genes are highly polymorphic; many different alleles exist in the different individuals inside a population. The polymorphism is so high, in a mixed population (non endogamic), no two individuals have exactly the same set of MHC molecules, with the exception of
identical twins Twins are two offspring produced by the same pregnancy.MedicineNet > Definition of Twin Last Editorial Review: 19 June 2000 Twins can be either ''monozygotic'' ('identical'), meaning that they develop from one zygote, which splits and forms two e ...
. The polymorphic regions in each allele are located in the region for peptide contact. Of all the peptides that could be displayed by MHC, only a subset will bind strongly enough to any given HLA allele, so by carrying two alleles for each gene, each encoding specificity for unique antigens, a much larger set of peptides can be presented. On the other hand, inside a population, the presence of many different alleles ensures there will always be an individual with a specific MHC molecule able to load the correct peptide to recognize a specific microbe. The evolution of the MHC polymorphism ensures that a population will not succumb to a new pathogen or a mutated one, because at least some individuals will be able to develop an adequate immune response to win over the pathogen. The variations in the MHC molecules (responsible for the polymorphism) are the result of the inheritance of different MHC molecules, and they are not induced by recombination, as it is the case for the antigen
receptors Receptor may refer to: *Sensory receptor, in physiology, any neurite structure that, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds ...
. Because of the high levels of allelic diversity found within its genes, MHC has also attracted the attention of many
evolution Evolution is the change in the heritable Phenotypic trait, characteristics of biological populations over successive generations. It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, re ...
ary biologists.


See also

* Cell-mediated immunity * Disassortative sexual selection *
Humoral immunity Humoral immunity is the aspect of immunity (medical), immunity that is mediated by macromolecules – including secreted antibodies, complement proteins, and certain antimicrobial peptides – located in extracellular fluids. Humoral immunity is ...
* MHC multimer *
Pheromone A pheromone () is a secreted or excreted chemical factor that triggers a social response in members of the same species. Pheromones are chemicals capable of acting like hormones outside the body of the secreting individual, to affect the behavio ...
* Streptamer *
Transplant rejection Transplant rejection occurs when transplanted tissue is rejected by the recipient's immune system, which destroys the transplanted tissue. Transplant rejection can be lessened by determining the molecular similitude between donor and recipien ...


Notes and references


Bibliography

*


External links

*
''Molecular Individuality''
—German online book (2012)
NetMHC 3.0 server
predicts binding of peptides to a number of different MHC (HLA) alleles

Cardiff University
The story of 2YF6: A Chicken MHC

RCSB Protein Data Bank: Molecule of the Month—Major Histocompatibility Complex

dbMHC Home, NCBI's database of the Major Histocompatibility Complex
{{Authority control Gene families Glycoproteins Immune system Single-pass transmembrane proteins