Definitions
Maintenance functions can be defined as maintenance, repair and overhaul (MRO), and MRO is also used for maintenance, repair and operations. Over time, the terminology of maintenance and MRO has begun to become standardized. TheTypes
The marine and air transportation, offshore structures, industrial plant and facility management industries depend on ''maintenance, repair and overhaul'' (MRO) including scheduled or preventive paint maintenance programmes to maintain and restore coatings applied to steel in environments subject to attack from erosion, corrosion and environmental pollution. The basic types of maintenance falling under MRO include: * Preventive maintenance, where equipment is checked and serviced in a planned manner (in a scheduled points in time or continuously) * Corrective maintenance, where equipment is repaired or replaced after wear, malfunction or break down * Reinforcement Architectural conservation employs MRO to preserve, rehabilitate, restore, or reconstruct historical structures with stone, brick, glass, metal, and wood which match the original constituent materials where possible, or with suitable polymer technologies when not.Preventive maintenance
Planned maintenance
Planned preventive maintenance (PPM), more commonly referred to as simply planned maintenance (PM) or scheduled maintenance, is any variety of scheduled maintenance to an object or item of equipment. Specifically, planned maintenance is a scheduled service visit carried out by a competent and suitable agent, to ensure that an item of equipment is operating correctly and to therefore avoid any unscheduled breakdown and downtime. The key factor as to when and why this work is being done is timing, and involves a service, resource or facility being unavailable. By contrast, condition-based maintenance is not directly based on equipment age. Planned maintenance is preplanned, and can be date-based, based on equipment running hours, or on distance travelled. Parts that have scheduled maintenance at fixed intervals, usually due to wearout or a fixed shelf life, are sometimes known as time-change interval, or TCI items.Predictive maintenance
Predictive maintenance techniques are designed to help determine the condition of in-service equipment in order to estimate when maintenance should be performed. This approach promises cost savings over routine or time-based preventive maintenance, because tasks are performed only when warranted. Thus, it is regarded as condition-based maintenance carried out as suggested by estimations of the degradation state of an item. The main promise of predictive maintenance is to allow convenient scheduling of corrective maintenance, and to prevent unexpected equipment failures. This maintenance strategy uses sensors to monitor key parameters within a machine or system, and uses this data in conjunction with analysed historical trends to continuously evaluate the system health and predict a breakdown before it happens. This strategy allows maintenance to be performed more efficiently, since more up-to-date data is obtained about how close the product is to failure. Predictive replacement is the replacement of an item that is still functioning properly. Usually it is a tax-benefit based replacement policy whereby expensive equipment or batches of individually inexpensive supply items are removed and donated on a predicted/fixed shelf life schedule. These items are given to tax-exempt institutions.Condition-based maintenance
Condition-based maintenance (CBM), shortly described, is maintenance when need arises. Albeit chronologically much older, It is considered one section or practice inside the broader and newer predictive maintenance field, where new AI technologies and connectivity abilities are put to action and where the acronym CBM is more often used to describe 'condition Based Monitoring' rather than the maintenance itself. CBM maintenance is performed after one or more indicators show that equipment is going to fail or that equipment performance is deteriorating. This concept is applicable to mission-critical systems that incorporate active redundancy and fault reporting. It is also applicable to non-mission critical systems that lack redundancy and fault reporting. Condition-based maintenance was introduced to try to maintain the correct equipment at the right time. CBM is based on using real-time data to prioritize and optimize maintenance resources. Observing the state of the system is known as condition monitoring. Such a system will determine the equipment's health, and act only when maintenance is actually necessary. Developments in recent years have allowed extensive instrumentation of equipment, and together with better tools for analyzing condition data, the maintenance personnel of today is more than ever able to decide what is the right time to perform maintenance on some piece of equipment. Ideally, condition-based maintenance will allow the maintenance personnel to do only the right things, minimizing spare parts cost, system downtime and time spent on maintenance.=Challenges
= Despite its usefulness of equipment, there are several challenges to the use of CBM. First and most important of all, the initial cost of CBM can be high. It requires improved instrumentation of the equipment. Often the cost of sufficient instruments can be quite large, especially on equipment that is already installed. Wireless systems have reduced the initial cost. Therefore, it is important for the installer to decide the importance of the investment before adding CBM to all equipment. A result of this cost is that the first generation of CBM in the oil and gas industry has only focused on vibration in heavy rotating equipment. Secondly, introducing CBM will invoke a major change in how maintenance is performed, and potentially to the whole maintenance organization in a company. Organizational changes are in general difficult. Also, the technical side of it is not always as simple. Even if some types of equipment can easily be observed by measuring simple values such as vibration (displacement, velocity or acceleration), temperature or pressure, it is not trivial to turn this measured data into actionable knowledge about the health of the equipment.=Value potential
= As systems get more costly, and instrumentation and information systems tend to become cheaper and more reliable, CBM becomes an important tool for running a plant or factory in an optimal manner. Better operations will lead to lower production cost and lower use of resources. And lower use of resources may be one of the most important differentiators in a future where environmental issues become more important by the day. Another scenario where value can be created is by monitoring the health of a car motor. Rather than changing parts at predefined intervals, the car itself can tell you when something needs to be changed based on cheap and simple instrumentation. It is Department of Defense policy that condition-based maintenance (CBM) be ''"implemented to improve maintenance agility and responsiveness, increase operational availability, and reduce life cycle total ownership costs".''=Advantages and disadvantages
= CBM has some advantages over planned maintenance: * Improved system reliability * Decreased maintenance costs * Decreased number of maintenance operations causes a reduction ofCorrective maintenance
Corrective maintenance is a type of maintenance used for equipment after equipment break down or malfunction is often most expensive – not only can worn equipment damage other parts and cause multiple damage, but consequential repair and replacement costs and loss of revenues due to down time during overhaul can be significant. Rebuilding and resurfacing of equipment and infrastructure damaged by erosion and corrosion as part of corrective or preventive maintenance programmes involves conventional processes such as welding and metal flame spraying, as well as engineered solutions with thermoset polymeric materials.See also
References
*Bibliography
*''Maintenance Planning, Coordination & Scheduling'', by Don Nyman & Joel Levitt Maintenance *''The Care of Things. Ethics and Politics of maintenance'', by Jérôme Denis & David Pontille, Polity PressSources
*Further reading
* {{Authority control Mechanical engineering Planning Prevention Product lifecycle management Reliability engineering Reuse