Magnetic Tweezers
   HOME

TheInfoList



OR:

Magnetic tweezers (MT) are
scientific instrument A scientific instrument is a device or tool used for scientific purposes, including the study of both natural phenomena and theoretical research. History Historically, the definition of a scientific instrument has varied, based on usage, laws, an ...
s for the manipulation and characterization of
biomolecule A biomolecule or biological molecule is loosely defined as a molecule produced by a living organism and essential to one or more typically biological processes. Biomolecules include large macromolecules such as proteins, carbohydrates, lipids ...
s or
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s. These apparatus exert forces and torques to individual molecules or groups of molecules. It can be used to measure the tensile strength or the force generated by molecules. Most commonly magnetic tweezers are used to study mechanical properties of biological macromolecules like
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
or
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, re ...
in
single-molecule experiment A single-molecule experiment is an experiment that investigates the properties of individual molecules. Single-molecule studies may be contrasted with measurements on an ensemble or bulk collection of molecules, where the individual behavior of mo ...
s. Other applications are the
rheology Rheology (; ) is the study of the flow of matter, primarily in a fluid (liquid or gas) state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applie ...
of
soft matter Soft matter or soft condensed matter is a type of matter that can be deformed or structurally altered by thermal or mechanical stress which is of similar magnitude to thermal fluctuations. The science of soft matter is a subfield of condensed ...
, and studies of force-regulated processes in living cells. Forces are typically on the order of pico- to nanonewtons (pN to nN). Due to their simple architecture, magnetic tweezers are a popular biophysical tool. In experiments, the molecule of interest is attached to a magnetic microparticle. The magnetic tweezer is equipped with magnets that are used to manipulate the magnetic particles whose position is measured with the help of video microscopy.


Construction principle and physics of magnetic tweezers

A magnetic tweezers apparatus consists of magnetic micro-particles, which can be manipulated with the help of an external magnetic field. The position of the magnetic particles is then determined by a microscopic objective with a camera.


Magnetic particles

Magnetic particles for the operation in magnetic tweezers come with a wide range of properties and have to be chosen according to the intended application. Two basic types of magnetic particles are described in the following paragraphs; however there are also others like magnetic nanoparticles in
ferrofluid Ferrofluid is a dark liquid that is attracted to the poles of a magnet. It is a colloidal liquid made of nanoscale ferromagnetic or ferrimagnetic particles suspended inside a carrier fluid (usually an organic solvent or water). Each magnetic ...
s, which allow experiments inside a cell. ; Superparamagnetic beads
Superparamagnetic Superparamagnetism is a form of magnetism which appears in small ferromagnetic or ferrimagnetic nanoparticles. In sufficiently small nanoparticles, magnetization can randomly flip direction under the influence of temperature. The typical time betw ...
beads are commercially available with a number of different characteristics. The most common is the use of spherical particles of a diameter in the micrometer range. They consist of a porous latex matrix in which magnetic nanoparticles have been embedded. Latex is auto-fluorescent and may therefore be advantageous for the imaging of their position. Irregular shaped particles present a larger surface and hence a higher probability to bind to the molecules to be studied. The coating of the microbeads may also contain ligands able to attach the molecules of interest. For example, the coating may contain
streptavidin Streptavidin is a 52 Atomic mass unit, kDa protein (tetramer) purified from the bacterium ''Streptomyces avidinii''. Streptavidin Homotetramer, homo-tetramers have an extraordinarily high affinity for biotin (also known as vitamin B7 or vitamin ...
which couples strongly to
biotin Biotin (also known as vitamin B7 or vitamin H) is one of the B vitamins. It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids. ...
, which itself may be bound to the molecules of interest. When exposed to an external magnetic field, these microbeads become magnetized. The induced magnetic moment \overrightarrow(\overrightarrow) is proportional to a weak external magnetic field \overrightarrow : \overrightarrow(\overrightarrow) = \frac where \mu_0 is the
vacuum permeability The vacuum magnetic permeability (variously ''vacuum permeability'', ''permeability of free space'', ''permeability of vacuum'', ''magnetic constant'') is the magnetic permeability in a classical vacuum. It is a physical constant, conventionally ...
. It is also proportional to the volume V of the microspheres, which stems from the fact that the number of magnetic
nanoparticle A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
s scales with the size of the bead. The magnetic susceptibility \chi is assumed to be scalar in this first estimation and may be calculated by \chi = 3 \frac , where \mu_r is the
relative permeability In multiphase flow in porous media, the relative permeability of a Phase (matter), phase is a dimensionless measure of the effective Permeability (Earth sciences), permeability of that phase. It is the ratio of the effective permeability of that ...
. In a strong external field, the induced magnetic moment saturates at a material dependent value \overrightarrow_ . The force \overrightarrow experienced by a microbead can be derived from the potential U =- \frac \overrightarrow(\overrightarrow) \cdot \overrightarrow of this magnetic moment in an outer magnetic field: \overrightarrow= - \overrightarrowU= \begin \frac \overrightarrow\left, \overrightarrow \^2 & \qquad \text \\ \frac \overrightarrow \left( \overrightarrow_ \cdot \overrightarrow \right) & \qquad \text \end The outer magnetic field can be evaluated numerically with the help of
finite element analysis Finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical models, mathematical modeling. Typical problem areas of interest include the traditional fields of structural ...
or by simply measuring the magnetic field with the help of a
Hall effect sensor A Hall effect sensor (also known as a Hall sensor or Hall probe) is any sensor incorporating one or more Hall elements, each of which produces a voltage proportional to one axial component of the Magnetic field#The B-field, magnetic field vector ...
. Theoretically it would be possible to calculate the force on the beads with these formulae; however the results are not very reliable due to uncertainties of the involved variables, but they allow estimating the order of magnitude and help to better understand the system. More accurate numerical values can be obtained considering the
Brownian motion Brownian motion is the random motion of particles suspended in a medium (a liquid or a gas). The traditional mathematical formulation of Brownian motion is that of the Wiener process, which is often called Brownian motion, even in mathematical ...
of the beads. Due to
anisotropies Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit ver ...
in the stochastic distribution of the nanoparticles within the microbead the magnetic moment is not perfectly aligned with the outer magnetic field i.e. the magnetic susceptibility tensor cannot be reduced to a scalar. For this reason, the beads are also subjected to a torque \overrightarrow which tries to align \overrightarrow and \overrightarrow : \overrightarrow = \overrightarrow \times \overrightarrow The torques generated by this method are typically much greater than 10^3 \mathrm, which is more than necessary to twist the molecules of interest. ; Ferromagnetic nanowires The use of ferromagnetic nanowires for the operation of magnetic tweezers enlarges their experimental application range. The length of these wires typically is in the order of tens of nanometers up to tens of micrometers, which is much larger than their diameter. In comparison with superparamagnetic beads, they allow the application of much larger forces and torques. In addition to that, they present a remnant magnetic moment. This allows the operation in weak magnetic field strengths. It is possible to produce nanowires with surface segments that present different chemical properties, which allows controlling the position where the studied molecules can bind to the wire.


Magnets

To be able to exert torques on the microbeads at least two magnets are necessary, but many other configurations have been realized, reaching from only one magnet that only pulls the magnetic microbeads to a system of six electromagnets that allows fully controlling the 3-dimensional position and rotation via a digital feedback loop. The magnetic field strength decreases roughly exponentially with the distance from the axis linking the two magnets on a typical scale of about the width of the gap between the magnets. Since this scale is rather large in comparison to the distances, when the microbead moves in an experiment, the force acting on it may be treated as constant. Therefore, magnetic tweezers are passive force clamps due to the nature of their construction in contrast to optical tweezers, although they may be used as positive clamps, too, when combined with a feedback loop. The field strength may be increased by sharpening the pole face of the magnet which, however, also diminishes the area where the field may be considered as constant. An iron ring connection the outer poles of the magnets may help to reduce stray fields. Magnetic tweezers can be operated with both permanent magnets and electromagnets. The two techniques have their specific advantages. ; Permanent Magnets Permanent magnets of magnetic tweezers are usually out of rare earth materials, like
neodymium Neodymium is a chemical element; it has Symbol (chemistry), symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth element, rare-earth metals. It is a hard (physics), hard, sli ...
and can reach field strengths exceeding 1.3 Tesla. The force on the beads may be controlled by moving the magnets along the vertical axis. Moving them up decreases the field strength at the position of the bead and vice versa. Torques on the magnetic beads may be exerted by turning the magnets around the vertical axis to change the direction of the field. The size of the magnets is in the order of millimeters as well as their spacing. ; Electromagnets The use of electromagnets in magnetic tweezers has the advantage that the field strength and direction can be changed just by adjusting the amplitude and the phase of the current for the magnets. For this reason, the magnets do not need to be moved which allows a faster control of the system and reduces mechanical noise. In order to increase the maximum field strength, a core of a soft paramagnetic material with high saturation and low
remanence Remanence or remanent magnetization or residual magnetism is the magnetization left behind in a ferromagnetic material (such as iron) after an external magnetic field is removed. Colloquially, when a magnet is "magnetized", it has remanence. The ...
may be added to the solenoid. In any case, however, the typical field strengths are much lower compared to those of permanent magnets of comparable size. Additionally, using electromagnets requires high currents that produce heat that may necessitate a cooling system.


Bead tracking system

The displacement of the magnetic beads corresponds to the response of the system to the imposed magnetic field and hence needs to be precisely measured: In a typical set-up, the experimental volume is illuminated from the top so that the beads produce diffraction rings in the focal plane of an objective which is placed under the tethering surface. The diffraction pattern is then recorded by a CCD-camera. The image can be analyzed in real time by a computer. The detection of the position in the plane of the tethering surface is not complicated since it corresponds to the center of the diffraction rings. The precision can be up to a few nanometers. For the position along the vertical axis, the diffraction pattern needs to be compared to reference images, which show the diffraction pattern of the considered bead in a number of known distances from the focal plane. These calibration images are obtained by keeping a bead fixed while displacing the objective, i.e. the focal plane, with the help of piezoelectric elements by known distances. With the help of interpolation, the resolution can reach precision of up 10 nm along this axis. The obtained coordinates may be used as input for a digital feedback loop that controls the magnetic field strength, for example, in order to keep the bead at a certain position. Non-magnetic beads are usually also added to the sample as a reference to provide a background displacement vector. They have a different diameter as the magnetic beads so that they are optically distinguishable. This is necessary to detect potential drift of the fluid. For example, if the density of magnetic particles is too high, they may drag the surrounding viscous fluid with them. The displacement vector of a magnetic bead can be determined by subtracting its initial position vector and this background displacement vector from its current position.


Force Calibration

The determination of the force that is exerted by the magnetic field on the magnetic beads can be calculated considering thermal fluctuations of the bead in the horizontal plane: The problem is rotational symmetric with respect to the vertical axis; hereafter one arbitrarily picked direction in the symmetry plane is called x. The analysis is the same for the direction orthogonal to the x-direction and may be used to increase precision. If the bead leaves its equilibrium position on the x -axis by \delta x due to thermal fluctuations, it will be subjected to a restoring force F_ that increases linearly with \delta x in the first order approximation. Considering only absolute values of the involved vectors it is geometrically clear that the proportionality constant is the force exerted by the magnets F over the length l of the molecule that keeps the bead anchored to the tethering surface: F_ = \frac \delta x . The
equipartition theorem In classical physics, classical statistical mechanics, the equipartition theorem relates the temperature of a system to its average energy, energies. The equipartition theorem is also known as the law of equipartition, equipartition of energy, ...
states that the mean energy that is stored in this "spring" is equal to \frac k_BT per degree of freedom. Since only one direction is considered here, the potential energy of the system reads: \langle E_p \rangle= \frac \frac \langle \delta x^2 \rangle = \frac k_BT . From this, a first estimate for the force acting on the bead can be deduced: F = \frac . For a more accurate calibration, however, an analysis in Fourier space is necessary. The power spectrum density P(\omega) of the position of the bead is experimentally available. A theoretical expression for this spectrum is derived in the following, which can then be fitted to the experimental curve in order to obtain the force exerted by the magnets on the bead as a fitting parameter. By definition this spectrum is the
squared modulus In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as raising to the power  2, and is denoted by a superscript 2; for instance, the square o ...
of the
Fourier transform In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the tr ...
of the position X(\omega) over the spectral bandwidth \Delta f : P(\omega) = \frac X(\omega) can be obtained considering the equation of motion for a bead of mass m : m \frac = -6 \pi R \eta \frac-\fracx(t)+f(t) The term 6 \pi R \eta \frac corresponds to the Stokes friction force for a spherical particle of radius R in a medium of viscosity \eta and \fracx(t) is the restoring force which is opposed to the stochastic force f(t) due to the Brownian motion. Here, one may neglect the inertial term m \frac, because the system is in a regime of very low
Reynolds number In fluid dynamics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between Inertia, inertial and viscous forces. At low Reynolds numbers, flows tend to ...
\left(\mathrm<10^\right). The equation of motion can be Fourier transformed inserting the driving force and the position in Fourier space: \begin f(t) = & \frac \int F(\omega) \mathrm^ \mathrmt \\ x(t) = & \frac \int X(\omega) \mathrm^ \mathrmt. \end This leads to: X(\omega) = \frac . The power spectral density of the stochastic force F(\omega) can be derived by using the equipartition theorem and the fact that Brownian collisions are completely uncorrelated: \frac = 4k_BT \cdot 6 \pi \eta R This corresponds to the Fluctuation-dissipation theorem. With that expression, it is possible to give a theoretical expression for the power spectrum: P(\omega) = \frac The only unknown in this expression, F , can be determined by fitting this expression to the experimental power spectrum. For more accurate results, one may subtract the effect due to finite camera integration time from the experimental spectrum before doing the fit. Another force calibration method is to use the viscous drag of the microbeads: Therefore, the microbeads are pulled through the viscous medium while recording their position. Since the Reynolds number for the system is very low, it is possible to apply Stokes law to calculate the friction force which is in equilibrium with the force exerted by the magnets: F=6\pi \eta R v . The velocity v can be determined by using the recorded velocity values. The force obtained via this formula can then be related to a given configuration of the magnets, which may serve as a calibration.


Typical experimental set-up

This section gives an example for an experiment carried out by Strick, Allemand, Croquette with the help of magnetic tweezers. A double-stranded DNA molecule is fixed with multiple binding sites on one end to a glass surface and on the other to a magnetic micro bead, which can be manipulated in a magnetic tweezers apparatus. By turning the magnets, torsional stress can be applied to the DNA molecule. Rotations in the sense of the DNA helix are counted positively and vice versa. While twisting, the magnetic tweezers also allow stretching the DNA molecule. This way, torsion extension curves may be recorded at different stretching forces. For low forces (less than about 0.5 pN), the DNA forms supercoils, so called plectonemes, which decrease the extension of the DNA molecule quite symmetrically for positive and negative twists. Augmenting the pulling force already increases the extension for zero imposed torsion. Positive twists lead again to plectoneme formation that reduces the extension. Negative twist, however, does not change the extension of the DNA molecule a lot. This can be interpreted as the separation of the two strands which corresponds to the denaturation of the molecule. In the high force regime, the extension is nearly independent of the applied torsional stress. The interpretation is the apparition of local regions of highly overwound DNA. An important parameter of this experiment is also the ionic strength of the solution which affects the critical values of the applied pulling force that separate the three force regimes.


History and development

Applying magnetic theory to the study of biology is a biophysical technique that started to appear in Germany in the early 1920s. Possibly the first demonstration was published by Alfred Heilbronn in 1922; his work looked at
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
of
protoplast Protoplast (), is a biology, biological term coined by Johannes von Hanstein, Hanstein in 1880 to refer to the entire cell, excluding the cell wall. Protoplasts can be generated by stripping the cell wall from plant, bacterium, bacterial, or f ...
s. The following year, Freundlich and Seifriz explored
rheology Rheology (; ) is the study of the flow of matter, primarily in a fluid (liquid or gas) state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applie ...
in
echinoderm An echinoderm () is any animal of the phylum Echinodermata (), which includes starfish, brittle stars, sea urchins, sand dollars and sea cucumbers, as well as the sessile sea lilies or "stone lilies". While bilaterally symmetrical as ...
eggs. Both studies included insertion of magnetic particles into cells and resulting movement observations in a
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
gradient In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
. In 1949 at Cambridge University,
Francis Crick Francis Harry Compton Crick (8 June 1916 – 28 July 2004) was an English molecular biologist, biophysicist, and neuroscientist. He, James Watson, Rosalind Franklin, and Maurice Wilkins played crucial roles in deciphering the Nucleic acid doub ...
and Arthur Hughes demonstrated a novel use of the technique, calling it "The Magnetic Particle Method." The idea, which originally came from Dr. Honor Fell, was that tiny magnetic beads, phagocytoced by whole cells grown in culture, could be manipulated by an external magnetic field The tissue culture was allowed to grow in the presence of the magnetic material, and cells that contained a magnetic particle could be seen with a high power microscope. As the magnetic particle was moved through the cell by a magnetic field, measurements about the physical properties of the
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
were made. Although some of their methods and measurements were self-admittedly crude, their work demonstrated the usefulness of magnetic field particle manipulation and paved the way for further developments of this technique. The magnetic particle phagocytosis method continued to be used for many years to research cytoplasm
rheology Rheology (; ) is the study of the flow of matter, primarily in a fluid (liquid or gas) state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applie ...
and other physical properties in whole cells. An innovation in the 1990s lead to an expansion of the technique's usefulness in a way that was similar to the then-emerging optical tweezers method. Chemically linking an individual DNA molecule between a magnetic bead and a glass slide allowed researchers to manipulate a single DNA molecule with an external magnetic field. Upon application of torsional forces to the molecule, deviations from free-form movement could be measured against theoretical standard force curves or
Brownian motion Brownian motion is the random motion of particles suspended in a medium (a liquid or a gas). The traditional mathematical formulation of Brownian motion is that of the Wiener process, which is often called Brownian motion, even in mathematical ...
analysis. This provided insight into structural and mechanical properties of DNA, such as elasticity. Magnetic tweezers as an experimental technique has become exceptionally diverse in use and application. More recently, the introduction of even more novel methods have been discovered or proposed. Since 2002, the potential for experiments involving many tethering molecules and parallel magnetic beads has been explored, shedding light on interaction mechanics, especially in the case of
DNA-binding protein DNA-binding proteins are proteins that have DNA-binding domains and thus have a specific or general affinity for single- or double-stranded DNA. Sequence-specific DNA-binding proteins generally interact with the major groove of B-DNA, becau ...
s. A technique was published in 2005 that involved coating a magnetic bead with a molecular receptor and the glass slide with its
ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
. This allows for a unique look at receptor-ligand dissociation force. In 2007, a new method for magnetically manipulating whole cells was developed by Kollmannsberger and Fabry. The technique involves attaching beads to the
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bio ...
and manipulating the cell from the outside of the membrane to look at structural elasticity. This method continues to be used as a means of studying
rheology Rheology (; ) is the study of the flow of matter, primarily in a fluid (liquid or gas) state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applie ...
, as well as cellular
structural proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respon ...
. A study appeared in a 2013 that used magnetic tweezers to mechanically measure the unwinding and rewinding of a single neuronal
SNARE SNARE proteins – "Soluble NSF attachment protein, SNAP REceptors" – are a large protein family consisting of at least 24 members in yeasts and more than 60 members in mammalian and plant cells. The primary role of SNARE proteins is to m ...
complex by tethering the entire complex between a magnetic bead and the slide, and then using the applied magnetic field force to pull the complex apart.


Biological applications


Magnetic tweezer rheology

Magnetic tweezers can be used to measure mechanical properties such as
rheology Rheology (; ) is the study of the flow of matter, primarily in a fluid (liquid or gas) state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applie ...
, the study of matter flow and elasticity, in whole cells. The
phagocytosis Phagocytosis () is the process by which a cell (biology), cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs ph ...
method previously described is useful for capturing a magnetic bead inside a cell. Measuring the movement of the beads inside the cell in response to manipulation from the external magnetic field yields information on the physical environment inside the cell and internal media rheology: viscosity of the cytoplasm, rigidity of internal structure, and ease of particle flow. A whole cell may also be magnetically manipulated by attaching a magnetic bead to the
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bio ...
via
fibronectin Fibronectin is a high- molecular weight (~500-~600 kDa) glycoprotein of the extracellular matrix that binds to membrane-spanning receptor proteins called integrins. Fibronectin also binds to other extracellular matrix proteins such as col ...
-coated magnetic beads. Fibronectin is a protein that will bind to extracellular
membrane protein Membrane proteins are common proteins that are part of, or interact with, biological membranes. Membrane proteins fall into several broad categories depending on their location. Integral membrane proteins are a permanent part of a cell membrane ...
s. This technique allows for measurements of cell stiffness and provides insights into the functioning of structural proteins. The schematic shown at right depicts the experimental setup devised by Bonakdar and Schilling, et al. (2015) for studying the structural protein
plectin Plectin is a giant protein found in nearly all mammalian cells which acts as a link between the three main components of the cytoskeleton: actin microfilaments, microtubules and intermediate filaments. In addition, plectin links the cytoskeleto ...
in mouse cells. Stiffness was measured as proportional to bead position in response to external magnetic manipulation.


Single-molecule experiments

Magnetic tweezers as a single-molecule method is decidedly the most common use in recent years. Through the single-molecule method, molecular tweezers provide a close look into the physical and mechanical properties of biological
macromolecule A macromolecule is a "molecule of high relative molecular mass, the structure of which essentially comprises the multiple repetition of units derived, actually or conceptually, from molecules of low relative molecular mass." Polymers are physi ...
s. Similar to other single-molecule methods, such as
optical tweezers Optical tweezers (originally called single-beam gradient force trap) are scientific instruments that use a highly focused laser beam to hold and move microscopic and sub-microscopic objects like atoms, nanoparticles and droplets, in a manner simil ...
, this method provides a way to isolate and manipulate an individual molecule free from the influences of surrounding molecules. Here, the magnetic bead is attached to a tethering surface by the molecule of interest. DNA or RNA may be tethered in either single-stranded or double-stranded form, or entire structural motifs can be tethered, such as DNA Holliday junctions, DNA hairpins, or entire
nucleosome A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone, histone proteins and resembles thread wrapped around a bobbin, spool. The nucleosome ...
s and
chromatin Chromatin is a complex of DNA and protein found in eukaryote, eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important r ...
. By acting upon the magnetic bead with the magnetic field, different types of torsional force can be applied to study intra-DNA interactions, as well as interactions with
topoisomerase DNA topoisomerases (or topoisomerases) are enzymes that catalyze changes in the topological state of DNA, interconverting relaxed and supercoiled forms, linked (catenated) and unlinked species, and knotted and unknotted DNA. Topological issues in ...
s or
histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes ...
s in
chromosome A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most import ...
s .


Single-complex studies

Magnetic tweezers go beyond the capabilities of other single-molecule methods, however, in that interactions between and within complexes can also be observed. This has allowed recent advances in understanding more about
DNA-binding protein DNA-binding proteins are proteins that have DNA-binding domains and thus have a specific or general affinity for single- or double-stranded DNA. Sequence-specific DNA-binding proteins generally interact with the major groove of B-DNA, becau ...
s, receptor-ligand interactions, and restriction enzyme cleavage. A more recent application of magnetic tweezers is seen in single-complex studies. With the help of DNA as the tethering agent, an entire molecular complex may be attached between the bead and the tethering surface. In exactly the same way as with pulling a DNA hairpin apart by applying a force to the magnetic bead, an entire complex can be pulled apart and force required for the dissociation can be measured. This is also similar to the method of pulling apart receptor-ligand interactions with magnetic tweezers to measure dissociation force.


Comparison to other techniques

This section compares the features of magnetic tweezers with those of the most important other single-molecule experimental methods:
optical tweezers Optical tweezers (originally called single-beam gradient force trap) are scientific instruments that use a highly focused laser beam to hold and move microscopic and sub-microscopic objects like atoms, nanoparticles and droplets, in a manner simil ...
and
atomic force microscopy Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the opti ...
. The magnetic interaction is highly specific to the used superparamagnetic microbeads. The magnetic field does practically not affect the sample. Optical tweezers have the problem that the laser beam may also interact with other particles of the biological sample due to contrasts in the
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
. In addition to that, the laser may cause photodamage and sample heating. In the case of atomic force microscopy, it may also be hard to discriminate the interaction of the tip with the studied molecule from other nonspecific interactions. Thanks to the low trap stiffness, the range of forces accessible with magnetic tweezers is lower in comparison with the two other techniques. The possibility to exert torque with magnetic tweezers is not unique: optically tweezers may also offer this feature when operated with
birefringent Birefringence, also called double refraction, is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are described as birefring ...
microbeads in combination with a circularly polarized laser beam. Another advantage of magnetic tweezers is that it is easy to carry out in parallel many single molecule measurements. An important drawback of magnetic tweezers is the low temporal and spatial resolution due to the data acquisition via video-microscopy. However, with the addition of a high-speed camera, the temporal and spatial resolution has been demonstrated to reach the Angstrom-level.


References


Further reading

* {{Cite journal , last1 = De Vlaminck , first1 = I. , last2 = Dekker , first2 = C. , doi = 10.1146/annurev-biophys-122311-100544 , title = Recent Advances in Magnetic Tweezers , journal = Annual Review of Biophysics , volume = 41 , pages = 453–472 , year = 2012 , pmid = 22443989 Biophysics Measuring instruments Particle traps