A logic gate is an idealized or physical device implementing a
Boolean function, a
logical operation performed on one or more
binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has for instance zero
rise time and unlimited
fan-out, or it may refer to a non-ideal physical device (see
Ideal and real op-amps
An operational amplifier (often op amp or opamp) is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output. In this configuration, an op amp produces an output potential (relative to c ...
for comparison).
Logic gates are primarily implemented using
diodes or
transistor
upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).
A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
s acting as
electronic switches, but can also be constructed using
vacuum tube
A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric voltage, potential difference has been applied.
The type kn ...
s, electromagnetic
relays (
relay logic),
fluidic logic,
pneumatic logic,
optics
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultra ...
,
molecules
A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioc ...
, or even
mechanical elements. Now, most logic gates are made from
MOSFETs (metal–oxide–semiconductor
field-effect transistors).
With amplification, logic gates can be cascaded in the same way that Boolean functions can be composed, allowing the construction of a physical model of all of
Boolean logic, and therefore, all of the algorithms and
mathematics that can be described with Boolean logic.
Logic circuits include such devices as
multiplexers,
registers,
arithmetic logic units (ALUs), and
computer memory
In computing, memory is a device or system that is used to store information for immediate use in a computer or related computer hardware and digital electronic devices. The term ''memory'' is often synonymous with the term '' primary storage ...
, all the way up through complete
microprocessor
A microprocessor is a computer processor where the data processing logic and control is included on a single integrated circuit, or a small number of integrated circuits. The microprocessor contains the arithmetic, logic, and control circu ...
s, which may contain more than 100 million logic gates.
Compound logic gates
AND-OR-Invert (AOI) and OR-AND-Invert (OAI) are often employed in circuit design because their construction using MOSFETs is simpler and more efficient than the sum of the individual gates.
In
reversible logic
Reversible computing is any model of computation where the computational process, to some extent, is time-reversible. In a model of computation that uses deterministic transitions from one state of the abstract machine to another, a necessary c ...
,
Toffoli or
Fredkin gates are used.
Electronic gates
A
functionally complete logic system may be composed of
relays,
valves (vacuum tubes), or
transistor
upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).
A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
s. The simplest family of logic gates uses
bipolar transistors, and is called
resistor–transistor logic (RTL). Unlike simple diode logic gates (which do not have a gain element), RTL gates can be cascaded indefinitely to produce more complex logic functions. RTL gates were used in early
integrated circuits. For higher speed and better density, the resistors used in RTL were replaced by diodes resulting in
diode–transistor logic (DTL).
Transistor–transistor logic Transistor–transistor logic (TTL) is a logic family built from bipolar junction transistors. Its name signifies that transistors perform both the logic function (the first "transistor") and the amplifying function (the second "transistor"), as o ...
(TTL) then supplanted DTL. As integrated circuits became more complex, bipolar transistors were replaced with smaller
field-effect transistors (
MOSFETs); see
PMOS and
NMOS. To reduce power consumption still further, most contemporary chip implementations of digital systems now use
CMOS logic. CMOS uses complementary (both n-channel and p-channel) MOSFET devices to achieve a high speed with low power dissipation.
For small-scale logic, designers now use prefabricated logic gates from families of devices such as the
TTL 7400 series by
Texas Instruments, the
CMOS 4000 series by
RCA, and their more recent descendants. Increasingly, these fixed-function logic gates are being replaced by
programmable logic devices, which allow designers to pack many mixed logic gates into a single integrated circuit. The field-programmable nature of
programmable logic devices such as
FPGAs has reduced the 'hard' property of hardware; it is now possible to change the logic design of a hardware system by reprogramming some of its components, thus allowing the features or function of a hardware implementation of a logic system to be changed. Other types of logic gates include, but are not limited to:
Electronic logic gates differ significantly from their relay-and-switch equivalents. They are much faster, consume much less power, and are much smaller (all by a factor of a million or more in most cases). Also, there is a fundamental structural difference. The switch circuit creates a continuous metallic path for current to flow (in either direction) between its input and its output. The semiconductor logic gate, on the other hand, acts as a high-
gain voltage
Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge t ...
amplifier, which sinks a tiny current at its input and produces a low-impedance voltage at its output. It is not possible for current to flow between the output and the input of a semiconductor logic gate.
Another important advantage of standardized integrated circuit logic families, such as the 7400 and 4000 families, is that they can be cascaded. This means that the output of one gate can be wired to the inputs of one or several other gates, and so on. Systems with varying degrees of complexity can be built without great concern of the designer for the internal workings of the gates, provided the limitations of each integrated circuit are considered.
The output of one gate can only drive a finite number of inputs to other gates, a number called the '
fan-out limit'. Also, there is always a delay, called the '
propagation delay', from a change in input of a gate to the corresponding change in its output. When gates are cascaded, the total propagation delay is approximately the sum of the individual delays, an effect which can become a problem in high-speed
synchronous circuits. Additional delay can be caused when many inputs are connected to an output, due to the distributed
capacitance
Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized a ...
of all the inputs and wiring and the finite amount of current that each output can provide.
History and development
The
binary number system
A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" ( one).
The base-2 numeral system is a positional notation ...
was refined by
Gottfried Wilhelm Leibniz
Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of mat ...
(published in 1705), influenced by the ancient ''
I Ching''s binary system.
Leibniz established that using the binary system combined the principles of
arithmetic
Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th c ...
and
logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premis ...
.
In an 1886 letter,
Charles Sanders Peirce
Charles Sanders Peirce ( ; September 10, 1839 – April 19, 1914) was an American philosopher, logician, mathematician and scientist who is sometimes known as "the father of pragmatism".
Educated as a chemist and employed as a scientist for ...
described how logical operations could be carried out by electrical switching circuits.
[Peirce, C. S., "Letter, Peirce to A. Marquand", dated 1886, '' Writings of Charles S. Peirce'', v. 5, 1993, pp. 421–423. See ] Eventually,
vacuum tube
A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric voltage, potential difference has been applied.
The type kn ...
s replaced relays for logic operations.
Lee De Forest
Lee de Forest (August 26, 1873 – June 30, 1961) was an American inventor and a fundamentally important early pioneer in electronics. He invented the first electronic device for controlling current flow; the three-element " Audion" triode ...
's modification, in 1907, of the
Fleming valve can be used as a logic gate.
Ludwig Wittgenstein introduced a version of the 16-row
truth table
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra (logic), Boolean algebra, boolean functions, and propositional calculus—which sets out the functional values of logical expression (mathematics) ...
as proposition 5.101 of ''
Tractatus Logico-Philosophicus'' (1921).
Walther Bothe, inventor of the
coincidence circuit In physics and electrical engineering, a coincidence circuit or coincidence gate is an electronic device with one output and two (or more) inputs. The output activates only when the circuit receives signals within a time window accepted as ''at th ...
, got part of the 1954
Nobel Prize
The Nobel Prizes ( ; sv, Nobelpriset ; no, Nobelprisen ) are five separate prizes that, according to Alfred Nobel's will of 1895, are awarded to "those who, during the preceding year, have conferred the greatest benefit to humankind." Alfre ...
in physics, for the first modern electronic AND gate in 1924.
Konrad Zuse designed and built electromechanical logic gates for his computer
Z1 (from 1935 to 1938).
From 1934 to 1936,
NEC engineer
Akira Nakashima,
Claude Shannon
Claude Elwood Shannon (April 30, 1916 – February 24, 2001) was an American mathematician, electrical engineer, and cryptographer known as a "father of information theory".
As a 21-year-old master's degree student at the Massachusetts In ...
and Viktor Shestakov introduced
switching circuit theory in a series of papers showing that
two-valued Boolean algebra
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas ...
, which they discovered independently, can describe the operation of switching circuits.
[ (3+207+1 pages]
10:00 min
/ref> Using this property of electrical switches to implement logic is the fundamental concept that underlies all electronic digital computers. Switching circuit theory became the foundation of digital circuit In theoretical computer science, a circuit is a model of computation in which input values proceed through a sequence of gates, each of which computes a function. Circuits of this kind provide a generalization of Boolean circuits and a mathematica ...
design, as it became widely known in the electrical engineering community during and after World War II
World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
, with theoretical rigor superseding the ''ad hoc'' methods that had prevailed previously.
Metal-oxide-semiconductor (MOS) devices in the forms of PMOS and NMOS were demonstrated by Bell Labs
Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984),
then AT&T Bell Laboratories (1984–1996)
and Bell Labs Innovations (1996–2007),
is an American industrial research and scientific development company owned by mult ...
engineers Mohamed M. Atalla and Dawon Kahng in 1960. Both types were later combined and adapted into complementary MOS (CMOS) logic by Chih-Tang Sah
Chih-Tang "Tom" Sah (; born in November 1932 in Beijing, China) is a Chinese-American electronics engineer and condensed matter physicist. He is best known for inventing CMOS (complementary MOS) logic with Frank Wanlass at Fairchild Semiconductor ...
and Frank Wanlass at Fairchild Semiconductor in 1963.
Active research is taking place in molecular logic gates.
Symbols
There are two sets of symbols for elementary logic gates in common use, both defined in ANSI/ IEEE Std 91-1984 and its supplement ANSI/IEEE Std 91a-1991. The "distinctive shape" set, based on traditional schematics, is used for simple drawings and derives from United States Military Standard MIL-STD-806 of the 1950s and 1960s. It is sometimes unofficially described as "military", reflecting its origin. The "rectangular shape" set, based on ANSI Y32.14 and other early industry standards as later refined by IEEE and IEC, has rectangular outlines for all types of gate and allows representation of a much wider range of devices than is possible with the traditional symbols. The IEC standard, IEC 60617-12, has been adopted by other standards, such as EN 60617-12:1999 in Europe, BS EN 60617-12:1999 in the United Kingdom, and DIN
DIN or Din or din may refer to:
People and language
* Din (name), people with the name
* Dīn, an Arabic word with three general senses: judgment, custom, and religion from which the name originates
* Dinka language (ISO 639 code: din), spoken by ...
EN 60617-12:1998 in Germany.
The mutual goal of IEEE Std 91-1984 and IEC 60617-12 was to provide a uniform method of describing the complex logic functions of digital circuits with schematic symbols. These functions were more complex than simple AND and OR gates. They could be medium scale circuits such as a 4-bit counter to a large scale circuit such as a microprocessor.
IEC 617-12 and its successor IEC 60617-12 do not explicitly show the "distinctive shape" symbols, but do not prohibit them. These are, however, shown in ANSI/IEEE 91 (and 91a) with this note: "The distinctive-shape symbol is, according to IEC Publication 617, Part 12, not preferred, but is not considered to be in contradiction to that standard." IEC 60617-12 correspondingly contains the note (Section 2.1) "Although non-preferred, the use of other symbols recognized by official national standards, that is distinctive shapes in place of symbols ist of basic gates shall not be considered to be in contradiction with this standard. Usage of these other symbols in combination to form complex symbols (for example, use as embedded symbols) is discouraged." This compromise was reached between the respective IEEE and IEC working groups to permit the IEEE and IEC standards to be in mutual compliance with one another.
A third style of symbols, DIN 40700 (1976), was in use in Europe and is still widely used in European academia, see the logic table in German Wikipedia.
In the 1980s, schematics were the predominant method to design both circuit boards and custom ICs known as gate arrays. Today custom ICs and the field-programmable gate array are typically designed with Hardware Description Languages (HDL) such as Verilog or VHDL.
Truth tables
Output comparison of 1-input logic gates.
Output comparison of 2-input logic gates.
Universal logic gates
Charles Sanders Peirce
Charles Sanders Peirce ( ; September 10, 1839 – April 19, 1914) was an American philosopher, logician, mathematician and scientist who is sometimes known as "the father of pragmatism".
Educated as a chemist and employed as a scientist for ...
(during 1880–1881) showed that NOR gates alone (or alternatively NAND gates alone) can be used to reproduce the functions of all the other logic gates, but his work on it was unpublished until 1933. The first published proof was by Henry M. Sheffer
Henry Maurice Sheffer (1 September 1882 – 17 March 1964) was an American logician.
Life and career
Sheffer was a Polish Jew born in the western Ukraine, who immigrated to the USA in 1892 with his parents and six siblings. He studied at the Bosto ...
in 1913, so the NAND logical operation is sometimes called Sheffer stroke; the logical NOR is sometimes called ''Peirce's arrow''. Consequently, these gates are sometimes called ''universal logic gates''.
De Morgan equivalent symbols
By use of De Morgan's laws, an ''AND'' function is identical to an ''OR'' function with negated inputs and outputs. Likewise, an ''OR'' function is identical to an ''AND'' function with negated inputs and outputs. A NAND gate is equivalent to an OR gate with negated inputs, and a NOR gate is equivalent to an AND gate with negated inputs.
This leads to an alternative set of symbols for basic gates that use the opposite core symbol (''AND'' or ''OR'') but with the inputs and outputs negated. Use of these alternative symbols can make logic circuit diagrams much clearer and help to show accidental connection of an active high output to an active low input or vice versa. Any connection that has logic negations at both ends can be replaced by a negationless connection and a suitable change of gate or vice versa. Any connection that has a negation at one end and no negation at the other can be made easier to interpret by instead using the De Morgan equivalent symbol at either of the two ends. When negation or polarity indicators on both ends of a connection match, there is no logic negation in that path (effectively, bubbles "cancel"), making it easier to follow logic states from one symbol to the next. This is commonly seen in real logic diagrams – thus the reader must not get into the habit of associating the shapes exclusively as OR or AND shapes, but also take into account the bubbles at both inputs and outputs in order to determine the "true" logic function indicated.
A De Morgan symbol can show more clearly a gate's primary logical purpose and the polarity of its nodes that are considered in the "signaled" (active, on) state. Consider the simplified case where a two-input NAND gate is used to drive a motor when either of its inputs are brought low by a switch. The "signaled" state (motor on) occurs when either one OR the other switch is on. Unlike a regular NAND symbol, which suggests AND logic, the De Morgan version, a two negative-input OR gate, correctly shows that OR is of interest. The regular NAND symbol has a bubble at the output and none at the inputs (the opposite of the states that will turn the motor on), but the De Morgan symbol shows both inputs and output in the polarity that will drive the motor.
De Morgan's theorem is most commonly used to implement logic gates as combinations of only NAND gates, or as combinations of only NOR gates, for economic reasons.
Data storage
Logic gates can also be used to store data. A storage element can be constructed by connecting several gates in a " latch" circuit. Latching circuitry is used in static random-access memory
Static random-access memory (static RAM or SRAM) is a type of random-access memory (RAM) that uses latching circuitry (flip-flop) to store each bit. SRAM is volatile memory; data is lost when power is removed.
The term ''static'' differe ...
. More complicated designs that use clock signal
In electronics and especially synchronous digital circuits, a clock signal (historically also known as ''logic beat'') oscillates between a high and a low state and is used like a metronome to coordinate actions of digital circuits.
A clock s ...
s and that change only on a rising or falling edge of the clock are called edge-triggered " flip-flops". Formally, a flip-flop is called a bistable circuit, because it has two stable states which it can maintain indefinitely. The combination of multiple flip-flops in parallel, to store a multiple-bit value, is known as a register. When using any of these gate setups the overall system has memory; it is then called a sequential logic system since its output can be influenced by its previous state(s), i.e. by the ''sequence'' of input states. In contrast, the output from combinational logic is purely a combination of its present inputs, unaffected by the previous input and output states.
These logic circuits are used in computer memory
Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered ...
. They vary in performance, based on factors of speed
In everyday use and in kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quantity ...
, complexity, and reliability of storage, and many different types of designs are used based on the application.
Three-state logic gates
A three-state logic gate is a type of logic gate that can have three different outputs: high (H), low (L) and high-impedance (Z). The high-impedance state plays no role in the logic, which is strictly binary. These devices are used on buses of the CPU
A central processing unit (CPU), also called a central processor, main processor or just processor, is the electronic circuitry that executes instructions comprising a computer program. The CPU performs basic arithmetic, logic, controlling, and ...
to allow multiple chips to send data. A group of three-states driving a line with a suitable control circuit is basically equivalent to a multiplexer, which may be physically distributed over separate devices or plug-in cards.
In electronics, a high output would mean the output is sourcing current from the positive power terminal (positive voltage). A low output would mean the output is sinking current to the negative power terminal (zero voltage). High impedance would mean that the output is effectively disconnected from the circuit.
Manufacturing
Since the 1990s, most logic gates are made in CMOS (complementary metal oxide semiconductor) technology that uses both NMOS and PMOS transistors. Often millions of logic gates are packaged
Packaging is the science, art and technology of enclosing or protecting products for distribution, storage, sale, and use. Packaging also refers to the process of designing, evaluating, and producing packages. Packaging can be described as a co ...
in a single integrated circuit.
Non-electronic logic gates
Non-electronic implementations are varied, though few of them are used in practical applications. Many early electromechanical digital computers, such as the Harvard Mark I, were built from relay logic gates, using electro-mechanical relays. Logic gates can be made using pneumatic devices, such as the Sorteberg relay or mechanical logic gates, including on a molecular scale. Logic gates have been made out of DNA (see DNA nanotechnology) and used to create a computer called MAYA (see MAYA-II). Logic gates can be made from quantum mechanical effects, see quantum logic gate. Photonic logic gates use nonlinear optical
Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in ''nonlinear media'', that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typica ...
effects.
In principle any method that leads to a gate that is functionally complete (for example, either a NOR or a NAND gate) can be used to make any kind of digital logic circuit. Note that the use of 3-state logic for bus systems is not needed, and can be replaced by digital multiplexers, which can be built using only simple logic gates (such as NAND gates, NOR gates, or AND and OR gates).
Logic families
There are several logic families with different characteristics (power consumption, speed, cost, size) such as: RDL (resistor–diode logic), RTL (resistor-transistor logic), DTL (diode–transistor logic), TTL (transistor–transistor logic) and CMOS. There are also sub-variants, e.g. standard CMOS logic vs. advanced types using still CMOS technology, but with some optimizations for avoiding loss of speed due to slower PMOS transistors.
See also
* And-inverter graph
An and-inverter graph (AIG) is a directed, acyclic graph that represents a structural implementation of the logical functionality of a circuit or network. An AIG consists of two-input nodes representing logical conjunction, terminal nodes labe ...
* Boolean algebra topics
* Boolean function
* Digital circuit In theoretical computer science, a circuit is a model of computation in which input values proceed through a sequence of gates, each of which computes a function. Circuits of this kind provide a generalization of Boolean circuits and a mathematica ...
* Espresso heuristic logic minimizer
* Fan-out
* Field-programmable gate array (FPGA)
* Flip-flop (electronics)
* Functional completeness
* Karnaugh map
* Combinational logic
* List of 4000 series integrated circuits
* List of 7400 series integrated circuits
* Logic family
* Logic level
* Logical graph
* NMOS logic
* Processor design
* Programmable logic controller (PLC)
* Programmable Logic Device (PLD)
* Propositional calculus
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations ...
* Quantum logic gate
* Race hazard
* Reversible computing
* Truth table
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra (logic), Boolean algebra, boolean functions, and propositional calculus—which sets out the functional values of logical expression (mathematics) ...
References
Further reading
*
*
*
External links
*
{{DEFAULTSORT:Logic Gate