HOME

TheInfoList



OR:

This is a list of articles that are considered
real analysis In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include co ...
topics. See also: glossary of real and complex analysis.


General topics


Limits Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2009 ...

*
Limit of a sequence As the positive integer n becomes larger and larger, the value n\times \sin\left(\tfrac1\right) becomes arbitrarily close to 1. We say that "the limit of the sequence n \times \sin\left(\tfrac1\right) equals 1." In mathematics, the li ...
**
Subsequential limit In mathematics, a subsequential limit of a sequence is the limit of some subsequence. Every subsequential limit is a cluster point, but not conversely. In first-countable spaces, the two concepts coincide. In a topological space, if every sub ...
– the limit of some subsequence *
Limit of a function Although the function is not defined at zero, as becomes closer and closer to zero, becomes arbitrarily close to 1. In other words, the limit of as approaches zero, equals 1. In mathematics, the limit of a function is a fundame ...
(''see List of limits for a list of limits of common functions'') **
One-sided limit In calculus, a one-sided limit refers to either one of the two Limit of a function, limits of a Function (mathematics), function f(x) of a Real number, real variable x as x approaches a specified point either from the left or from the right. The ...
– either of the two limits of functions of real variables x, as x approaches a point from above or below **
Squeeze theorem In calculus, the squeeze theorem (also known as the sandwich theorem, among other names) is a theorem regarding the limit of a function that is bounded between two other functions. The squeeze theorem is used in calculus and mathematical a ...
– confirms the limit of a function via comparison with two other functions **
Big O notation Big ''O'' notation is a mathematical notation that describes the asymptotic analysis, limiting behavior of a function (mathematics), function when the Argument of a function, argument tends towards a particular value or infinity. Big O is a memb ...
– used to describe the limiting behavior of a function when the argument tends towards a particular value or infinity, usually in terms of simpler functions


Sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
s and
series Series may refer to: People with the name * Caroline Series (born 1951), English mathematician, daughter of George Series * George Series (1920–1995), English physicist Arts, entertainment, and media Music * Series, the ordered sets used i ...

(''see also
list of mathematical series This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. *Here, 0^0 Zero to the power of zero, is taken to have the value 1 *\ denotes the fractional part ...
'') *
Arithmetic progression An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...
– a sequence of numbers such that the difference between the consecutive terms is constant ** Generalized arithmetic progression – a sequence of numbers such that the difference between consecutive terms can be one of several possible constants *
Geometric progression A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the ''common ratio''. For example, the s ...
– a sequence of numbers such that each consecutive term is found by multiplying the previous one by a fixed non-zero number * Harmonic progression – a sequence formed by taking the reciprocals of the terms of an arithmetic progression *Finite sequence – ''see
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
'' *Infinite sequence – ''see
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
'' *Divergent sequence – ''see
limit of a sequence As the positive integer n becomes larger and larger, the value n\times \sin\left(\tfrac1\right) becomes arbitrarily close to 1. We say that "the limit of the sequence n \times \sin\left(\tfrac1\right) equals 1." In mathematics, the li ...
or
divergent series In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series mus ...
'' *Convergent sequence – ''see
limit of a sequence As the positive integer n becomes larger and larger, the value n\times \sin\left(\tfrac1\right) becomes arbitrarily close to 1. We say that "the limit of the sequence n \times \sin\left(\tfrac1\right) equals 1." In mathematics, the li ...
or
convergent series In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (a_1, a_2, a_3, \ldots) defines a series that is denoted :S=a_1 + a_2 + a_3 + \cdots=\sum_^\infty a_k. The th partial ...
'' **
Cauchy sequence In mathematics, a Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all excluding a finite number of elements of the sequence are le ...
– a sequence whose elements become arbitrarily close to each other as the sequence progresses *
Convergent series In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (a_1, a_2, a_3, \ldots) defines a series that is denoted :S=a_1 + a_2 + a_3 + \cdots=\sum_^\infty a_k. The th partial ...
– a series whose sequence of partial sums converges *
Divergent series In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series mus ...
– a series whose sequence of partial sums diverges *
Power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''a_n'' represents the coefficient of the ''n''th term and ''c'' is a co ...
– a series of the form f(x) = \sum_^\infty a_n \left( x-c \right)^n = a_0 + a_1 (x-c)^1 + a_2 (x-c)^2 + a_3 (x-c)^3 + \cdots **
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor ser ...
– a series of the form f(a)+\frac (x-a)+ \frac (x-a)^2+\frac(x-a)^3+ \cdots. ***Maclaurin series – ''see
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor ser ...
'' ****
Binomial series In mathematics, the binomial series is a generalization of the binomial formula to cases where the exponent is not a positive integer: where \alpha is any complex number, and the power series on the right-hand side is expressed in terms of the ...
– the Maclaurin series of the function ''f'' given by ''f''(''x'') ''='' (1 + ''x'') ''α'' *
Telescoping series In mathematics, a telescoping series is a series whose general term t_n is of the form t_n=a_-a_n, i.e. the difference of two consecutive terms of a sequence (a_n). As a consequence the partial sums of the series only consists of two terms of (a_n ...
*
Alternating series In mathematics, an alternating series is an infinite series of terms that alternate between positive and negative signs. In capital-sigma notation this is expressed \sum_^\infty (-1)^n a_n or \sum_^\infty (-1)^ a_n with for all . Like an ...
*
Geometric series In mathematics, a geometric series is a series (mathematics), series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant. For example, 1/2 + 1/4 + 1/8 + 1/16 + ⋯, the series \tfrac12 + \tfrac1 ...
** Divergent geometric series * Harmonic series *
Fourier series A Fourier series () is an Series expansion, expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. By expressing a function as a sum of sines and cosines, many problems ...
*
Lambert series In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form :S(q)=\sum_^\infty a_n \frac . It can be resummed formally by expanding the denominator: :S(q)=\sum_^\infty a_n \sum_^\infty q^ = \sum_^\infty ...


Summation In mathematics, summation is the addition of a sequence of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, pol ...
methods

*
Cesàro summation In mathematical analysis, Cesàro summation (also known as the Cesàro mean or Cesàro limit) assigns values to some Series (mathematics), infinite sums that are Divergent series, not necessarily convergent in the usual sense. The Cesàro sum ...
*
Euler summation In the mathematics of convergent and divergent series In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If ...
*
Lambert summation In mathematical analysis and analytic number theory, Lambert summation is a summability method for summing infinite series related to Lambert series specially relevant in analytic number theory. Definition Define the Lambert kernel by L(x)=\log(1/ ...
*
Borel summation In mathematics, Borel summation is a summation method for divergent series, introduced by . It is particularly useful for summing divergent asymptotic series, and in some sense gives the best possible sum for such series. There are several vari ...
*
Summation by parts In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformati ...
– transforms the summation of products of into other summations * Cesàro mean *
Abel's summation formula In mathematics, Abel's summation formula, introduced by Niels Henrik Abel, is intensively used in analytic number theory and the study of special functions to compute series. Formula Let (a_n)_^\infty be a sequence of real or complex numbers. ...


More advanced topics

*
Convolution In mathematics (in particular, functional analysis), convolution is a operation (mathematics), mathematical operation on two function (mathematics), functions f and g that produces a third function f*g, as the integral of the product of the two ...
**
Cauchy product In mathematics, more specifically in mathematical analysis, the Cauchy product is the discrete convolution of two infinite series. It is named after the French mathematician Augustin-Louis Cauchy. Definitions The Cauchy product may apply to infin ...
–is the discrete convolution of two sequences *
Farey sequence In mathematics, the Farey sequence of order ''n'' is the sequence of completely reduced fractions, either between 0 and 1, or without this restriction, which have denominators less than or equal to ''n'', arranged in order of increasing size. Wi ...
– the sequence of completely reduced fractions between 0 and 1 *
Oscillation Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
– is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +∞ or −∞; and is also a quantitative measure for that. *
Indeterminate form Indeterminate form is a mathematical expression that can obtain any value depending on circumstances. In calculus, it is usually possible to compute the limit of the sum, difference, product, quotient or power of two functions by taking the corres ...
s – algebraic expressions gained in the context of limits. The indeterminate forms include 00, 0/0, 1, ∞ − ∞, ∞/∞, 0 × ∞, and ∞0.


Convergence

*
Pointwise convergence In mathematics, pointwise convergence is one of Modes of convergence (annotated index), various senses in which a sequence of function (mathematics), functions can Limit (mathematics), converge to a particular function. It is weaker than uniform co ...
,
Uniform convergence In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions (f_n) converges uniformly to a limiting function f on a set E as the function domain i ...
*
Absolute convergence In mathematics, an infinite series of numbers is said to converge absolutely (or to be absolutely convergent) if the sum of the absolute values of the summands is finite. More precisely, a real or complex series \textstyle\sum_^\infty a_n is said ...
,
Conditional convergence In mathematics, a series or integral is said to be conditionally convergent if it converges, but it does not converge absolutely. Definition More precisely, a series of real numbers \sum_^\infty a_n is said to converge conditionally if \lim_\,\s ...
* Normal convergence *
Radius of convergence In mathematics, the radius of convergence of a power series is the radius of the largest Disk (mathematics), disk at the Power series, center of the series in which the series Convergent series, converges. It is either a non-negative real number o ...


Convergence tests In mathematics, convergence tests are methods of testing for the convergence, conditional convergence, absolute convergence, interval of convergence or divergence of an infinite series \sum_^\infty a_n. List of tests Limit of the summand If ...

*
Integral test for convergence In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test ...
*
Cauchy's convergence test The Cauchy convergence test is a method used to test infinite series for convergence. It relies on bounding sums of terms in the series. This convergence criterion is named after Augustin-Louis Cauchy who published it in his textbook '' Cours d'A ...
*
Ratio test In mathematics, the ratio test is a convergence tests, test (or "criterion") for the convergent series, convergence of a series (mathematics), series :\sum_^\infty a_n, where each term is a real number, real or complex number and is nonzero wh ...
*
Direct comparison test In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral c ...
*
Limit comparison test In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement Suppose that we have two series \Sigma_n a_n and \Sigma_n b_n ...
*
Root test In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series. It depends on the quantity :\limsup_\sqrt where a_n are the terms of the series, and states that the series converges absolutely if t ...
*
Alternating series test In mathematical analysis, the alternating series test proves that an alternating series is convergent when its terms decrease monotonically in absolute value and approach zero in the limit. The test was devised by Gottfried Leibniz and is someti ...
*
Dirichlet's test In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet, and was published posthumously ...
*
Stolz–Cesàro theorem In mathematics, the Stolz–Cesàro theorem is a criterion for proving the convergence of a sequence. It is named after mathematicians Otto Stolz and Ernesto Cesàro, who stated and proved it for the first time. The Stolz–Cesàro theorem can b ...
– is a criterion for proving the convergence of a sequence


Functions

*
Function of a real variable In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function (mathematics), function whose domain of a function, domain is the real numbers \mathbb, or ...
* Real multivariable function *
Continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
**
Nowhere continuous function In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain. If f is a function from real numbers to real numbers, then f is nowhere continuous ...
**
Weierstrass function In mathematics, the Weierstrass function, named after its discoverer, Karl Weierstrass, is an example of a real-valued function (mathematics), function that is continuous function, continuous everywhere but Differentiable function, differentiab ...
*
Smooth function In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (''differentiability class)'' it has over its domain. A function of class C^k is a function of smoothness at least ; t ...
**
Analytic function In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex ...
***
Quasi-analytic function In mathematics, a quasi-analytic class of functions is a generalization of the class of real analytic functions based upon the following fact: If ''f'' is an analytic function on an interval 'a'',''b''nbsp;⊂ R, and at some point ''f'' and ...
**
Non-analytic smooth function In mathematics, smooth functions (also called infinitely differentiable functions) and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is no ...
** Flat function **
Bump function In mathematical analysis, a bump function (also called a test function) is a function f : \Reals^n \to \Reals on a Euclidean space \Reals^n which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supp ...
*
Differentiable function In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in ...
*
Integrable function In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus,Inte ...
**
Square-integrable function In mathematics, a square-integrable function, also called a quadratically integrable function or L^2 function or square-summable function, is a real- or complex-valued measurable function for which the integral of the square of the absolute value ...
, p-integrable function *
Monotonic function In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of or ...
**
Bernstein's theorem on monotone functions In real analysis, a branch of mathematics, Bernstein's theorem states that every real number, real-valued function (mathematics), function on the half-line that is totally monotone is a mixture of exponential functions. In one important special c ...
– states that any real-valued function on the half-line , ∞) that is totally monotone is a mixture of exponential functions *Inverse function *Convex function, Concave function *Singular function *Harmonic function **Weakly harmonic function **Proper convex function *Rational function *Orthogonal function *Implicit and explicit functions **
Implicit function theorem In multivariable calculus, the implicit function theorem is a tool that allows relations to be converted to functions of several real variables. It does so by representing the relation as the graph of a function. There may not be a single functi ...
– allows relations to be converted to functions *
Measurable function In mathematics, and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in ...
*
Baire one star function A Baire one star function is a type of function studied in real analysis. A function f: \mathbb \to \mathbb is in class Baire* one, written f \in \mathbf^_, and is called a Baire one star function if, for each perfect set P \in \mathbb, there is an ...
*
Symmetric function In mathematics, a function of n variables is symmetric if its value is the same no matter the order of its arguments. For example, a function f\left(x_1,x_2\right) of two arguments is a symmetric function if and only if f\left(x_1,x_2\right) = f\ ...
*
Domain A domain is a geographic area controlled by a single person or organization. Domain may also refer to: Law and human geography * Demesne, in English common law and other Medieval European contexts, lands directly managed by their holder rather ...
*
Codomain In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
**
Image An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
*
Support Support may refer to: Arts, entertainment, and media * Supporting character * Support (art), a solid surface upon which a painting is executed Business and finance * Support (technical analysis) * Child support * Customer support * Income Su ...
*
Differential of a function In calculus, the differential represents the principal part of the change in a function y = f(x) with respect to changes in the independent variable. The differential dy is defined by dy = f'(x)\,dx, where f'(x) is the derivative of with resp ...


Continuity

*
Uniform continuity In mathematics, a real function f of real numbers is said to be uniformly continuous if there is a positive real number \delta such that function values over any function domain interval of the size \delta are as close to each other as we want. In ...
**
Modulus of continuity In mathematical analysis, a modulus of continuity is a function ω : , ∞→ , ∞used to measure quantitatively the uniform continuity of functions. So, a function ''f'' : ''I'' → R admits ω as a modulus of continuity if :, f(x)-f(y), \leq\ ...
*
Lipschitz continuity In mathematical analysis, Lipschitz continuity, named after Germany, German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for function (mathematics), functions. Intuitively, a Lipschitz continuous function is limited in h ...
*
Semi-continuity In mathematical analysis, semicontinuity (or semi-continuity) is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function f is upper (respectively, lower) semicontinuous at a point x_0 if, r ...
*
Equicontinuous In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable f ...
*
Absolute continuity In calculus and real analysis, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between ...
*
Hölder condition In mathematics, a real or complex-valued function on -dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are real constants , , such that , f(x) - f(y) , \leq C\, x - y\, ^ for all and in the do ...
– condition for Hölder continuity


Distribution Distribution may refer to: Mathematics *Distribution (mathematics), generalized functions used to formulate solutions of partial differential equations *Probability distribution, the probability of a particular value or value range of a varia ...
s

*
Dirac delta function In mathematical analysis, the Dirac delta function (or distribution), also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line ...
*
Heaviside step function The Heaviside step function, or the unit step function, usually denoted by or (but sometimes , or ), is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. Differen ...
*
Hilbert transform In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, of a real variable and produces another function of a real variable . The Hilbert transform is given by the Cauchy principal value ...
*
Green's function In mathematics, a Green's function (or Green function) is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions. This means that if L is a linear dif ...


Variation

*
Bounded variation In mathematical analysis, a function of bounded variation, also known as ' function, is a real number, real-valued function (mathematics), function whose total variation is bounded (finite): the graph of a function having this property is well beh ...
*
Total variation In mathematics, the total variation identifies several slightly different concepts, related to the (local property, local or global) structure of the codomain of a Function (mathematics), function or a measure (mathematics), measure. For a real ...


Derivative In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
s

*
Second derivative In calculus, the second derivative, or the second-order derivative, of a function is the derivative of the derivative of . Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the secon ...
**
Inflection point In differential calculus and differential geometry, an inflection point, point of inflection, flex, or inflection (rarely inflexion) is a point on a smooth plane curve at which the curvature changes sign. In particular, in the case of the graph ...
– found using second derivatives *
Directional derivative In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. The directional derivative of a multivariable differentiable (scalar) function along a given vect ...
,
Total derivative In mathematics, the total derivative of a function at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with res ...
,
Partial derivative In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). P ...


Differentiation rules This article is a summary of differentiation rules, that is, rules for computing the derivative of a function (mathematics), function in calculus. Elementary rules of differentiation Unless otherwise stated, all functions are functions of real nu ...

*
Linearity of differentiation In calculus, the derivative of any linear combination of functions equals the same linear combination of the derivatives of the functions; this property is known as linearity of differentiation, the rule of linearity, or the superposition rule fo ...
*
Product rule In calculus, the product rule (or Leibniz rule or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as (u \cdot v)' = u ' \cdot v ...
*
Quotient rule In calculus, the quotient rule is a method of finding the derivative of a function (mathematics), function that is the ratio of two differentiable functions. Let h(x)=\frac, where both and are differentiable and g(x)\neq 0. The quotient rule sta ...
*
Chain rule In calculus, the chain rule is a formula that expresses the derivative of the Function composition, composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h ...
*
Inverse function theorem In mathematics, the inverse function theorem is a theorem that asserts that, if a real function ''f'' has a continuous derivative near a point where its derivative is nonzero, then, near this point, ''f'' has an inverse function. The inverse fu ...
– gives sufficient conditions for a function to be invertible in a neighborhood of a point in its domain, also gives a formula for the derivative of the inverse function


Differentiation in geometry and topology

''see also List of differential geometry topics'' *
Differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ...
*
Differentiable structure In mathematics, an ''n''- dimensional differential structure (or differentiable structure) on a set ''M'' makes ''M'' into an ''n''-dimensional differential manifold, which is a topological manifold with some additional structure that allows for d ...
* Submersion – a differentiable map between differentiable manifolds whose differential is everywhere surjective


Integral In mathematics, an integral is the continuous analog of a Summation, sum, which is used to calculate area, areas, volume, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental oper ...
s

''(see also
Lists of integrals Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does no ...
)'' *
Antiderivative In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a continuous function is a differentiable function whose derivative is equal to the original function . This can be stated ...
**
Fundamental theorem of calculus The fundamental theorem of calculus is a theorem that links the concept of derivative, differentiating a function (mathematics), function (calculating its slopes, or rate of change at every point on its domain) with the concept of integral, inte ...
– a theorem of antiderivatives *
Multiple integral In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, or . Integrals of a function of two variables over a region in \mathbb^2 (the real-number ...
*
Iterated integral In multivariable calculus, an iterated integral is the result of applying integrals to a function of more than one variable (for example f(x,y) or f(x,y,z)) in such a way that each of the integrals considers some of the variables as given consta ...
*
Improper integral In mathematical analysis, an improper integral is an extension of the notion of a definite integral to cases that violate the usual assumptions for that kind of integral. In the context of Riemann integrals (or, equivalently, Darboux integral ...
**
Cauchy principal value In mathematics, the Cauchy principal value, named after Augustin-Louis Cauchy, is a method for assigning values to certain improper integrals which would otherwise be undefined. In this method, a singularity on an integral interval is avoided by ...
– method for assigning values to certain improper integrals *
Line integral In mathematics, a line integral is an integral where the function (mathematics), function to be integrated is evaluated along a curve. The terms ''path integral'', ''curve integral'', and ''curvilinear integral'' are also used; ''contour integr ...
* Anderson's theorem – says that the integral of an integrable, symmetric, unimodal, non-negative function over an ''n''-dimensional convex body (''K'') does not decrease if ''K'' is translated inwards towards the origin


Integration and measure theory

''see also
List of integration and measure theory topics {{TOCright This is a list of integration and measure theory topics, by Wikipedia page. Intuitive foundations *Length *Area *Volume *Probability *Moving average Riemann integral *Riemann sum * Riemann–Stieltjes integral *Bounded variation * Jord ...
'' *
Riemann integral In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Gö ...
,
Riemann sum In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann. One very common application is in numerical integration, i.e., approxima ...
**
Riemann–Stieltjes integral In mathematics, the Riemann–Stieltjes integral is a generalization of the Riemann integral, named after Bernhard Riemann and Thomas Joannes Stieltjes. The definition of this integral was first published in 1894 by Stieltjes. It serves as an inst ...
*
Darboux integral In real analysis, the Darboux integral is constructed using Darboux sums and is one possible definition of the integral of a function. Darboux integrals are equivalent to Riemann integrals, meaning that a function is Darboux-integrable if and onl ...
*
Lebesgue integration In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the axis. The Lebesgue integral, named after French mathematician Henri L ...


Fundamental theorems

*
Monotone convergence theorem In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non- increasing, or non- decreasing. In its ...
– relates monotonicity with convergence *
Intermediate value theorem In mathematical analysis, the intermediate value theorem states that if f is a continuous function whose domain contains the interval , then it takes on any given value between f(a) and f(b) at some point within the interval. This has two imp ...
– states that for each value between the least upper bound and greatest lower bound of the image of a continuous function there is at least one point in its domain that the function maps to that value *
Rolle's theorem In calculus, Rolle's theorem or Rolle's lemma essentially states that any real-valued differentiable function that attains equal values at two distinct points must have at least one point, somewhere between them, at which the slope of the tangen ...
– essentially states that a differentiable function which attains equal values at two distinct points must have a point somewhere between them where the first derivative is zero *
Mean value theorem In mathematics, the mean value theorem (or Lagrange's mean value theorem) states, roughly, that for a given planar arc (geometry), arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant lin ...
– that given an arc of a differentiable curve, there is at least one point on that arc at which the derivative of the curve is equal to the "average" derivative of the arc *
Taylor's theorem In calculus, Taylor's theorem gives an approximation of a k-times differentiable function around a given point by a polynomial of degree k, called the k-th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation a ...
– gives an approximation of a k times differentiable function around a given point by a k-th order Taylor-polynomial. *
L'Hôpital's rule L'Hôpital's rule (, ), also known as Bernoulli's rule, is a mathematical theorem that allows evaluating limits of indeterminate forms using derivatives. Application (or repeated application) of the rule often converts an indeterminate form ...
– uses derivatives to help evaluate limits involving indeterminate forms *
Abel's theorem In mathematics, Abel's theorem for power series relates a limit of a power series to the sum of its coefficients. It is named after Norwegian mathematician Niels Henrik Abel, who proved it in 1826. Theorem Let the Taylor series G (x) = \sum_ ...
– relates the limit of a power series to the sum of its coefficients *
Lagrange inversion theorem In mathematical analysis, the Lagrange inversion theorem, also known as the Lagrange–Bürmann formula, gives the Taylor series expansion of the inverse function of an analytic function. Lagrange inversion is a special case of the inverse function ...
– gives the Taylor series of the inverse of an analytic function *
Darboux's theorem In differential geometry, a field in mathematics, Darboux's theorem is a theorem providing a normal form for special classes of differential 1-forms, partially generalizing the Frobenius integration theorem. It is named after Jean Gaston Darbo ...
– states that all functions that result from the differentiation of other functions have the intermediate value property: the image of an interval is also an interval *
Heine–Borel theorem In real analysis, the Heine–Borel theorem, named after Eduard Heine and Émile Borel, states: For a subset S of Euclidean space \mathbb^n, the following two statements are equivalent: *S is compact, that is, every open cover of S has a finite s ...
– sometimes used as the defining property of compactness *
Bolzano–Weierstrass theorem In mathematics, specifically in real analysis, the Bolzano–Weierstrass theorem, named after Bernard Bolzano and Karl Weierstrass, is a fundamental result about convergence in a finite-dimensional Euclidean space \R^n. The theorem states that ea ...
– states that each bounded sequence in \mathbb^ has a convergent subsequence *
Extreme value theorem In calculus, the extreme value theorem states that if a real-valued function f is continuous on the closed and bounded interval ,b/math>, then f must attain a maximum and a minimum, each at least once. That is, there exist numbers c and ...
- states that if a function f is continuous in the closed and bounded interval ,b/math>, then it must attain a maximum and a minimum


Foundational topics


Number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
s


Real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s

*
Construction of the real numbers In mathematics, there are several equivalent ways of defining the real numbers. One of them is that they form a complete ordered field that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete o ...
**
Natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
**
Integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
**
Rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
**
Irrational number In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, ...
*
Completeness of the real numbers Completeness is a property of the real numbers that, intuitively, implies that there are no "gaps" (in Dedekind's terminology) or "missing points" in the real number line. This contrasts with the rational numbers, whose corresponding number li ...
*
Least-upper-bound property In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) is a fundamental property of the real numbers. More generally, a partially ordered set has the least-upper-bound property if ever ...
*
Real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
**
Extended real number line In mathematics, the extended real number system is obtained from the real number system \R by adding two elements denoted +\infty and -\infty that are respectively greater and lower than every real number. This allows for treating the potential ...
**
Dedekind cut In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind (but previously considered by Joseph Bertrand), are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of a set, ...


Specific numbers

* 0 * 1 ** 0.999... *
Infinity Infinity is something which is boundless, endless, or larger than any natural number. It is denoted by \infty, called the infinity symbol. From the time of the Ancient Greek mathematics, ancient Greeks, the Infinity (philosophy), philosophic ...


Sets

*
Open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
*
Neighbourhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neighbourh ...
*
Cantor set In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and mentioned by German mathematician Georg Cantor in 1883. Throu ...
*
Derived set (mathematics) In mathematics, more specifically in point-set topology, the derived set of a subset S of a topological space is the set of all limit points of S. It is usually denoted by S'. The concept was first introduced by Georg Cantor in 1872 and he develo ...
* Completeness *
Limit superior and limit inferior In mathematics, the limit inferior and limit superior of a sequence can be thought of as limiting (that is, eventual and extreme) bounds on the sequence. They can be thought of in a similar fashion for a function (see limit of a function). For ...
**
Supremum In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique, ...
**
Infimum In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique ...
* Interval **
Partition of an interval In mathematics, a partition of an interval on the real line is a finite sequence of real numbers such that :. In other terms, a partition of a compact interval is a strictly increasing sequence of numbers (belonging to the interval itsel ...


Maps A map is a symbolic depiction of interrelationships, commonly spatial, between things within a space. A map may be annotated with text and graphics. Like any graphic, a map may be fixed to paper or other durable media, or may be displayed on ...

*
Contraction mapping In mathematics, a contraction mapping, or contraction or contractor, on a metric space (''M'', ''d'') is a function ''f'' from ''M'' to itself, with the property that there is some real number 0 \leq k < 1 such that for all ''x'' and ...
* Metric map * Fixed point – a point of a function that maps to itself


Applied mathematical tools


Infinite expressions

*
Continued fraction A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, ...
*
Series Series may refer to: People with the name * Caroline Series (born 1951), English mathematician, daughter of George Series * George Series (1920–1995), English physicist Arts, entertainment, and media Music * Series, the ordered sets used i ...
*
Infinite product In mathematics, for a sequence of complex numbers ''a''1, ''a''2, ''a''3, ... the infinite product : \prod_^ a_n = a_1 a_2 a_3 \cdots is defined to be the limit of the partial products ''a''1''a''2...''a'n'' as ''n'' increases without bound ...
s


Inequalities Inequality may refer to: * Inequality (mathematics), a relation between two quantities when they are different. * Economic inequality, difference in economic well-being between population groups ** Income inequality, an unequal distribution of i ...

''See
list of inequalities This article lists Wikipedia articles about named mathematical inequalities. Inequalities in pure mathematics Analysis * Agmon's inequality * Askey–Gasper inequality * Babenko–Beckner inequality * Bernoulli's inequality * Bernstein's ...
'' *
Triangle inequality In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of Degeneracy (mathematics)#T ...
*
Bernoulli's inequality In mathematics, Bernoulli's inequality (named after Jacob Bernoulli) is an inequality that approximates exponentiations of 1+x. It is often employed in real analysis. It has several useful variants: Integer exponent * Case 1: (1 + x)^r \geq 1 ...
*
Cauchy–Schwarz inequality The Cauchy–Schwarz inequality (also called Cauchy–Bunyakovsky–Schwarz inequality) is an upper bound on the absolute value of the inner product between two vectors in an inner product space in terms of the product of the vector norms. It is ...
*
Hölder's inequality In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality (mathematics), inequality between Lebesgue integration, integrals and an indispensable tool for the study of Lp space, spaces. The numbers an ...
* Minkowski inequality *
Jensen's inequality In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier p ...
*
Chebyshev's inequality In probability theory, Chebyshev's inequality (also called the Bienaymé–Chebyshev inequality) provides an upper bound on the probability of deviation of a random variable (with finite variance) from its mean. More specifically, the probability ...
*
Inequality of arithmetic and geometric means Inequality may refer to: * Inequality (mathematics), a relation between two quantities when they are different. * Economic inequality, difference in economic well-being between population groups ** Income inequality, an unequal distribution of in ...


Mean A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. There are several kinds of means (or "measures of central tendency") in mathematics, especially in statist ...
s

*
Generalized mean In mathematics, generalised means (or power mean or Hölder mean from Otto Hölder) are a family of functions for aggregating sets of numbers. These include as special cases the Pythagorean means (arithmetic mean, arithmetic, geometric mean, ge ...
* Pythagorean means **
Arithmetic mean In mathematics and statistics, the arithmetic mean ( ), arithmetic average, or just the ''mean'' or ''average'' is the sum of a collection of numbers divided by the count of numbers in the collection. The collection is often a set of results fr ...
**
Geometric mean In mathematics, the geometric mean is a mean or average which indicates a central tendency of a finite collection of positive real numbers by using the product of their values (as opposed to the arithmetic mean which uses their sum). The geometri ...
**
Harmonic mean In mathematics, the harmonic mean is a kind of average, one of the Pythagorean means. It is the most appropriate average for ratios and rate (mathematics), rates such as speeds, and is normally only used for positive arguments. The harmonic mean ...
* Geometric–harmonic mean *
Arithmetic–geometric mean In mathematics, the arithmetic–geometric mean (AGM or agM) of two positive real numbers and is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms f ...
*
Weighted mean The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others. The ...
*
Quasi-arithmetic mean In mathematics and statistics, the quasi-arithmetic mean or generalised ''f''-mean or Kolmogorov-Nagumo-de Finetti mean is one generalisation of the more familiar means such as the arithmetic mean and the geometric mean, using a function f. It is a ...


Orthogonal polynomials In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geom ...

*
Classical orthogonal polynomials In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials: the Hermite polynomials, Laguerre polynomials, Jacobi polynomials (including as a special case the Gegenbauer polynomials, Chebyshev polynomials, ...
**
Hermite polynomials In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence. The polynomials arise in: * signal processing as Hermitian wavelets for wavelet transform analysis * probability, such as the Edgeworth series, as well a ...
**
Laguerre polynomials In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are nontrivial solutions of Laguerre's differential equation: xy'' + (1 - x)y' + ny = 0,\ y = y(x) which is a second-order linear differential equation. Thi ...
**
Jacobi polynomials In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) P_n^(x) are a class of Classical orthogonal polynomials, classical orthogonal polynomials. They are orthogonal with respect to the weight (1-x)^\alpha(1+x)^\beta ...
** Gegenbauer polynomials **
Legendre polynomials In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and t ...


Spaces

*
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
*
Metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
** Banach fixed point theorem – guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces, provides method to find them **
Complete metric space In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the bou ...
*
Topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
**
Function space In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a ve ...
***
Sequence space In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural num ...
*
Compact space In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., i ...


Measures

*
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it c ...
*
Outer measure In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer me ...
**
Hausdorff measure In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assi ...
*
Dominated convergence theorem In measure theory, Lebesgue's dominated convergence theorem gives a mild sufficient condition under which limits and integrals of a sequence of functions can be interchanged. More technically it says that if a sequence of functions is bounded i ...
– provides sufficient conditions under which two limit processes commute, namely Lebesgue integration and almost everywhere convergence of a sequence of functions.


Field of sets In mathematics, a field of sets is a mathematical structure consisting of a pair ( X, \mathcal ) consisting of a set X and a family \mathcal of subsets of X called an algebra over X that contains the empty set as an element, and is closed under t ...

* Sigma-algebra


Historical figures

*
Michel Rolle Michel Rolle (21 April 1652 – 8 November 1719) was a French mathematician. He is best known for Rolle's theorem (1691). He is also the co-inventor in Europe of Gaussian elimination (1690). Life Rolle was born in Ambert, Basse-Auvergne. Ro ...
(1652–1719) *
Brook Taylor Brook Taylor (18 August 1685 – 29 December 1731) was an English mathematician and barrister best known for several results in mathematical analysis. Taylor's most famous developments are Taylor's theorem and the Taylor series, essent ...
(1685–1731) *
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
(1707–1783) *
Joseph-Louis Lagrange Joseph-Louis Lagrange (born Giuseppe Luigi LagrangiaJoseph Fourier Jean-Baptiste Joseph Fourier (; ; 21 March 1768 – 16 May 1830) was a French mathematician and physicist born in Auxerre, Burgundy and best known for initiating the investigation of Fourier series, which eventually developed into Fourier analys ...
(1768–1830) *
Bernard Bolzano Bernard Bolzano (, ; ; ; born Bernardus Placidus Johann Nepomuk Bolzano; 5 October 1781 – 18 December 1848) was a Bohemian mathematician, logician, philosopher, theologian and Catholic priest of Italian extraction, also known for his liberal ...
(1781–1848) *
Augustin Cauchy Baron Augustin-Louis Cauchy ( , , ; ; 21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist. He was one of the first to rigorously state and prove the key theorems of calculus (thereby creating real a ...
(1789–1857) *
Niels Henrik Abel Niels Henrik Abel ( , ; 5 August 1802 – 6 April 1829) was a Norwegian mathematician who made pioneering contributions in a variety of fields. His most famous single result is the first complete proof demonstrating the impossibility of solvin ...
(1802–1829) *
Peter Gustav Lejeune Dirichlet Johann Peter Gustav Lejeune Dirichlet (; ; 13 February 1805 – 5 May 1859) was a German mathematician. In number theory, he proved special cases of Fermat's last theorem and created analytic number theory. In analysis, he advanced the theory o ...
(1805–1859) *
Karl Weierstrass Karl Theodor Wilhelm Weierstrass (; ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the " father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school t ...
(1815–1897) *
Eduard Heine Heinrich Eduard Heine (16 March 1821 – 21 October 1881) was a German mathematician. Heine became known for results on special functions and in real analysis. In particular, he authored an important treatise on spherical harmonics and Leg ...
(1821–1881) *
Pafnuty Chebyshev Pafnuty Lvovich Chebyshev ( rus, Пафну́тий Льво́вич Чебышёв, p=pɐfˈnutʲɪj ˈlʲvovʲɪtɕ tɕɪbɨˈʂof) ( – ) was a Russian mathematician and considered to be the founding father of Russian mathematics. Chebysh ...
(1821–1894) *
Leopold Kronecker Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, abstract algebra and logic, and criticized Georg Cantor's work on set theory. Heinrich Weber quoted Kronecker as having said, ...
(1823–1891) *
Bernhard Riemann Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the f ...
(1826–1866) *
Richard Dedekind Julius Wilhelm Richard Dedekind (; ; 6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. H ...
(1831–1916) *
Rudolf Lipschitz Rudolf Otto Sigismund Lipschitz (14 May 1832 – 7 October 1903) was a German mathematician who made contributions to mathematical analysis (where he gave his name to the Lipschitz continuity condition) and differential geometry, as well as numbe ...
(1832–1903) *
Camille Jordan Marie Ennemond Camille Jordan (; 5 January 1838 – 22 January 1922) was a French mathematician, known both for his foundational work in group theory and for his influential ''Cours d'analyse''. Biography Jordan was born in Lyon and educated at ...
(1838–1922) *
Jean Gaston Darboux Jean-Gaston Darboux FAS MIF FRS FRSE (14 August 1842 – 23 February 1917) was a French mathematician. Life According to his birth certificate, he was born in Nîmes in France on 14 August 1842, at 1 am. However, probably due to the midn ...
(1842–1917) *
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( ; ;  – 6 January 1918) was a mathematician who played a pivotal role in the creation of set theory, which has become a foundations of mathematics, fundamental theory in mathematics. Cantor establi ...
(1845–1918) *
Ernesto Cesàro Ernesto Cesàro (12 March 1859 – 12 September 1906) was an Italian mathematician who worked in the field of differential geometry. He wrote a book, ''Lezioni di geometria intrinseca'' (Naples, 1890), on this topic, in which he also describes ...
(1859–1906) *
Otto Hölder Ludwig Otto Hölder (December 22, 1859 – August 29, 1937) was a German mathematician born in Stuttgart. Early life and education Hölder was the youngest of three sons of professor Otto Hölder (1811–1890), and a grandson of professor Christ ...
(1859–1937) *
Hermann Minkowski Hermann Minkowski (22 June 1864 – 12 January 1909) was a mathematician and professor at the University of Königsberg, the University of Zürich, and the University of Göttingen, described variously as German, Polish, Lithuanian-German, o ...
(1864–1909) * Alfred Tauber (1866–1942) *
Felix Hausdorff Felix Hausdorff ( , ; November 8, 1868 – January 26, 1942) was a German mathematician, pseudonym Paul Mongré (''à mogré' (Fr.) = "according to my taste"), who is considered to be one of the founders of modern topology and who contributed sig ...
(1868–1942) *
Émile Borel Félix Édouard Justin Émile Borel (; 7 January 1871 – 3 February 1956) was a French people, French mathematician and politician. As a mathematician, he was known for his founding work in the areas of measure theory and probability. Biograp ...
(1871–1956) *
Henri Lebesgue Henri Léon Lebesgue (; ; June 28, 1875 – July 26, 1941) was a French mathematician known for his Lebesgue integration, theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an ...
(1875–1941) *
Wacław Sierpiński Wacław Franciszek Sierpiński (; 14 March 1882 – 21 October 1969) was a Polish mathematician. He was known for contributions to set theory (research on the axiom of choice and the continuum hypothesis), number theory, theory of functions ...
(1882–1969) *
Johann Radon Johann Karl August Radon (; 16 December 1887 – 25 May 1956) was an Austrian mathematician. His doctoral dissertation was on the calculus of variations (in 1910, at the University of Vienna). Life RadonBrigitte Bukovics: ''Biography of Johan ...
(1887–1956) *
Karl Menger Karl Menger (; January 13, 1902 – October 5, 1985) was an Austrian-born American mathematician, the son of the economist Carl Menger. In mathematics, Menger studied the theory of algebra over a field, algebras and the dimension theory of low-r ...
(1902–1985)


Related fields of analysis

*
Asymptotic analysis In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing Limit (mathematics), limiting behavior. As an illustration, suppose that we are interested in the properties of a function as becomes very larg ...
– studies a method of describing limiting behaviour *
Convex analysis Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex optimization, convex minimization, a subdomain of optimization (mathematics), optimization theor ...
– studies the properties of convex functions and convex sets **
List of convexity topics A list is a set of discrete items of information collected and set forth in some format for utility, entertainment, or other purposes. A list may be memorialized in any number of ways, including existing only in the mind of the list-maker, but ...
*
Harmonic analysis Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency. The frequency representation is found by using the Fourier transform for functions on unbounded do ...
– studies the representation of functions or signals as superpositions of basic waves **
List of harmonic analysis topics This is a list of harmonic analysis topics. See also list of Fourier analysis topics and list of Fourier-related transforms, which are more directed towards the classical Fourier series and Fourier transform of mathematical analysis, mathematical p ...
*
Fourier analysis In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fo ...
– studies Fourier series and Fourier transforms **
List of Fourier analysis topics {{Short description, none This is a list of Fourier analysis topics. Fourier analysis * Multiplier (Fourier analysis) * Fourier shell correlation * Pinsky phenomenon Fourier series * Generalized Fourier series * Regressive discrete Fourier serie ...
**
List of Fourier-related transforms This is a list of linear transformations of function (mathematics), functions related to Fourier analysis. Such transformations Map (mathematics), map a function to a set of coefficients of basis functions, where the basis functions are trigonomet ...
*
Complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
– studies the extension of real analysis to include complex numbers *
Functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics ...
– studies vector spaces endowed with limit-related structures and the linear operators acting upon these spaces *
Nonstandard analysis The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using (ε, δ)-definitio ...
– studies
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series ( ...
using a rigorous treatment of
infinitesimals In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referred to the " ...
.


See also

*
Calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
, the classical calculus of Newton and
Leibniz Gottfried Wilhelm Leibniz (or Leibnitz; – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition to many ...
. *
Non-standard calculus In mathematics, nonstandard calculus is the modern application of infinitesimals, in the sense of nonstandard analysis, to infinitesimal calculus. It provides a rigorous justification for some arguments in calculus that were previously considered m ...
, a rigorous application of
infinitesimals In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referred to the " ...
, in the sense of
non-standard analysis The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using (ε, δ)-definitio ...
, to the classical calculus of Newton and Leibniz. {{DEFAULTSORT:Real analysis topics Outlines of mathematics and logic Outlines Mathematics-related lists