In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the term linear function refers to two distinct but related notions:
* In
calculus
Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations.
Originally called infinitesimal calculus or "the ...
and related areas, a linear function is a
function whose
graph is a
straight line, that is, a
polynomial function of
degree zero or one. For distinguishing such a linear function from the other concept, the term ''
affine function
In Euclidean geometry, an affine transformation or affinity (from the Latin, ''wikt:affine, affinis'', "connected with") is a geometric transformation that preserves line (geometry), lines and parallel (geometry), parallelism, but not necessarily ...
'' is often used.
* In
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
,
mathematical analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series ( ...
, and
functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics ...
, a linear function is a
linear map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
.
As a polynomial function

In calculus,
analytic geometry
In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.
Analytic geometry is used in physics and engineering, and als ...
and related areas, a linear function is a polynomial of degree one or less, including the
zero polynomial (the latter not being considered to have degree zero).
When the function is of only one
variable, it is of the form
:
where and are
constants, often
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s. The
graph of such a function of one variable is a nonvertical line. is frequently referred to as the slope of the line, and as the intercept.
If ''a > 0'' then the
gradient
In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
is positive and the graph slopes upwards.
If ''a < 0'' then the
gradient
In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
is negative and the graph slopes downwards.
For a function
of any finite number of variables, the general formula is
:
and the graph is a
hyperplane
In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
of dimension .
A
constant function
In mathematics, a constant function is a function whose (output) value is the same for every input value.
Basic properties
As a real-valued function of a real-valued argument, a constant function has the general form or just For example, ...
is also considered linear in this context, as it is a polynomial of degree zero or is the zero polynomial. Its graph, when there is only one variable, is a horizontal line.
In this context, a function that is also a linear map (the other meaning) may be referred to as a
homogeneous
Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, i ...
linear function or a
linear form
In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear mapIn some texts the roles are reversed and vectors are defined as linear maps from covectors to scalars from a vector space to its field (mat ...
. In the context of linear algebra, the polynomial functions of degree 0 or 1 are the scalar-valued
affine maps.
As a linear map

In linear algebra, a linear function is a map ''f'' between two
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s such that
:
:
Here denotes a constant belonging to some
field of
scalars (for example, the
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s) and and are elements of a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
, which might be itself.
In other terms the linear function preserves
vector addition
Vector most often refers to:
* Euclidean vector, a quantity with a magnitude and a direction
* Disease vector, an agent that carries and transmits an infectious pathogen into another living organism
Vector may also refer to:
Mathematics a ...
and
scalar multiplication
In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector ...
.
Some authors use "linear function" only for linear maps that take values in the scalar field;
[Gelfand 1961] these are more commonly called
linear form
In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear mapIn some texts the roles are reversed and vectors are defined as linear maps from covectors to scalars from a vector space to its field (mat ...
s.
The "linear functions" of calculus qualify as "linear maps" when (and only when) , or, equivalently, when the constant equals zero in the one-degree polynomial above. Geometrically, the graph of the function must pass through the origin.
See also
*
Homogeneous function
In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar (mathematics), scalar, then the function's value is multiplied by some p ...
*
Nonlinear system
*
Piecewise linear function
In mathematics, a piecewise linear or segmented function is a real-valued function of a real variable, whose graph is composed of straight-line segments.
Definition
A piecewise linear function is a function defined on a (possibly unbounded) ...
*
Linear approximation
*
Linear interpolation
In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.
Linear interpolation between two known points
If the two known po ...
*
Discontinuous linear map
*
Linear least squares
Notes
References
* Izrail Moiseevich Gelfand (1961), ''Lectures on Linear Algebra'', Interscience Publishers, Inc., New York. Reprinted by Dover, 1989.
*
*
* Leonid N. Vaserstein (2006), "Linear Programming", in
Leslie Hogben, ed., ''Handbook of Linear Algebra'', Discrete Mathematics and Its Applications, Chapman and Hall/CRC, chap. 50.
{{Calculus topics
Polynomial functions