Lie Group Isomorphism
   HOME

TheInfoList



OR:

In abstract algebra, a group isomorphism is a function between two
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished.


Definition and notation

Given two groups (G, *) and (H, \odot), a ''group isomorphism'' from (G, *) to (H, \odot) is a bijective group homomorphism from G to H. Spelled out, this means that a group isomorphism is a bijective function f : G \to H such that for all u and v in G it holds that f(u * v) = f(u) \odot f(v). The two groups (G, *) and (H, \odot) are isomorphic if there exists an isomorphism from one to the other. This is written (G, *) \cong (H, \odot). Often shorter and simpler notations can be used. When the relevant group operations are understood, they are omitted and one writes G \cong H. Sometimes one can even simply write G = H. Whether such a notation is possible without confusion or ambiguity depends on context. For example, the equals sign is not very suitable when the groups are both subgroups of the same group. See also the examples. Conversely, given a group (G, *), a set H, and a
bijection In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other s ...
f : G \to H, we can make H a group (H, \odot) by defining f(u) \odot f(v) = f(u * v). If H = G and \odot = * then the bijection is an
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
(''q.v.''). Intuitively, group theorists view two isomorphic groups as follows: For every element g of a group G, there exists an element h of H such that h "behaves in the same way" as g (operates with other elements of the group in the same way as g). For instance, if g generates G, then so does h. This implies, in particular, that G and H are in bijective correspondence. Thus, the definition of an isomorphism is quite natural. An isomorphism of groups may equivalently be defined as an invertible group homomorphism (the inverse function of a bijective group homomorphism is also a group homomorphism).


Examples

In this section some notable examples of isomorphic groups are listed. * The group of all real numbers under addition, (\R, +), is isomorphic to the group of positive real numbers under multiplication (\R^+, \times): *:(\R, +) \cong (\R^+, \times) via the isomorphism f(x) = e^x. * The group \Z of integers (with addition) is a subgroup of \R, and the
factor group Factor, a Latin word meaning "who/which acts", may refer to: Commerce * Factor (agent), a person who acts for, notably a mercantile and colonial agent * Factor (Scotland), a person or firm managing a Scottish estate * Factors of production, suc ...
\R/\Z is isomorphic to the group S^1 of complex numbers of
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
1 (under multiplication): *:\R/\Z \cong S^1 * The Klein four-group is isomorphic to the
direct product In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one ta ...
of two copies of \Z_2 = \Z/2\Z, and can therefore be written \Z_2 \times \Z_2. Another notation is \operatorname_2, because it is a dihedral group. * Generalizing this, for all
odd Odd means unpaired, occasional, strange or unusual, or a person who is viewed as eccentric. Odd may also refer to: Acronym * ODD (Text Encoding Initiative) ("One Document Does it all"), an abstracted literate-programming format for describing X ...
n, \operatorname_ is isomorphic to the direct product of \operatorname_n and \Z_2. * If (G, *) is an infinite cyclic group, then (G, *) is isomorphic to the integers (with the addition operation). From an algebraic point of view, this means that the set of all integers (with the addition operation) is the "only" infinite cyclic group. Some groups can be proven to be isomorphic, relying on the axiom of choice, but the proof does not indicate how to construct a concrete isomorphism. Examples: * The group (\R, +) is isomorphic to the group (\Complex, +) of all complex numbers under addition. * The group (\Complex^*, \cdot) of non-zero complex numbers with multiplication as the operation is isomorphic to the group S^1 mentioned above.


Properties

The kernel of an isomorphism from (G, *) to (H, \odot) is always , where eG is the
identity Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), ...
of the group (G, *) If (G, *) and (H, \odot) are isomorphic, then G is
abelian Abelian may refer to: Mathematics Group theory * Abelian group, a group in which the binary operation is commutative ** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms * Metabelian group, a grou ...
if and only if H is abelian. If f is an isomorphism from (G, *) to (H, \odot), then for any a \in G, the
order Order, ORDER or Orders may refer to: * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of d ...
of a equals the order of f(a). If (G, *) and (H, \odot) are isomorphic, then (G, *) is a locally finite group if and only if (H, \odot) is locally finite. The number of distinct groups (up to isomorphism) of
order Order, ORDER or Orders may refer to: * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of d ...
n is given by sequence A000001 in the OEIS. The first few numbers are 0, 1, 1, 1 and 2 meaning that 4 is the lowest order with more than one group.


Cyclic groups

All cyclic groups of a given order are isomorphic to (\Z_n, +_n), where +_n denotes addition
modulo In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the '' modulus'' of the operation). Given two positive numbers and , modulo (often abbreviated as ) is t ...
n. Let G be a cyclic group and n be the order of G. Letting x be a generator of G, G is then equal to \langle x \rangle = \left\. We will show that G \cong (\Z_n, +_n). Define \varphi : G \to \Z_n = \, so that \varphi(x^a) = a. Clearly, \varphi is bijective. Then \varphi(x^a \cdot x^b) = \varphi(x^) = a + b = \varphi(x^a) +_n \varphi(x^b), which proves that G \cong (\Z_n, +_n).


Consequences

From the definition, it follows that any isomorphism f : G \to H will map the identity element of G to the identity element of H, f(e_G) = e_H, that it will map inverses to inverses, f(u^) = f(u)^ \quad \text u \in G, and more generally, nth powers to nth powers, f(u^n)= f(u)^n \quad \text u \in G, and that the inverse map f^ : H \to G is also a group isomorphism. The
relation Relation or relations may refer to: General uses *International relations, the study of interconnection of politics, economics, and law on a global level *Interpersonal relationship, association or acquaintance between two or more people *Public ...
"being isomorphic" satisfies is an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation ...
. If f is an isomorphism between two groups G and H, then everything that is true about G that is only related to the group structure can be translated via f into a true ditto statement about H, and vice versa.


Automorphisms

An isomorphism from a group (G, *) to itself is called an
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
of the group. Thus it is a bijection f : G \to G such that f(u) * f(v) = f(u * v). The
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
under an automorphism of a conjugacy class is always a conjugacy class (the same or another). The composition of two automorphisms is again an automorphism, and with this operation the set of all automorphisms of a group G, denoted by \operatorname(G), forms itself a group, the '' automorphism group'' of G. For all abelian groups there is at least the automorphism that replaces the group elements by their inverses. However, in groups where all elements are equal to their inverses this is the
trivial automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
, e.g. in the Klein four-group. For that group all
permutation In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or proc ...
s of the three non-identity elements are automorphisms, so the automorphism group is isomorphic to S_3 (which itself is isomorphic to \operatorname_3). In \Z_p for a prime number p, one non-identity element can be replaced by any other, with corresponding changes in the other elements. The automorphism group is isomorphic to \Z_ For example, for n = 7, multiplying all elements of \Z_7 by 3, modulo 7, is an automorphism of order 6 in the automorphism group, because 3^6 \equiv 1 \pmod 7, while lower powers do not give 1. Thus this automorphism generates \Z_6. There is one more automorphism with this property: multiplying all elements of \Z_7 by 5, modulo 7. Therefore, these two correspond to the elements 1 and 5 of \Z_6, in that order or conversely. The automorphism group of \Z_6 is isomorphic to \Z_2, because only each of the two elements 1 and 5 generate \Z_6, so apart from the identity we can only interchange these. The automorphism group of \Z_2 \oplus \Z_2 \oplus \oplus \Z_2 = \operatorname_2 \oplus \Z_2 has order 168, as can be found as follows. All 7 non-identity elements play the same role, so we can choose which plays the role of (1,0,0). Any of the remaining 6 can be chosen to play the role of (0,1,0). This determines which element corresponds to (1,1,0). For (0,0,1) we can choose from 4, which determines the rest. Thus we have 7 \times 6 \times 4 = 168 automorphisms. They correspond to those of the Fano plane, of which the 7 points correspond to the 7 elements. The lines connecting three points correspond to the group operation: a, b, and c on one line means a + b = c, a + c = b, and b + c = a. See also general linear group over finite fields. For abelian groups, all non-trivial automorphisms are outer automorphisms. Non-abelian groups have a non-trivial inner automorphism group, and possibly also outer automorphisms.


See also

* Group isomorphism problem *


References

* {{reflist Group theory Morphisms