L-glutamic Acid Decarboxylase
   HOME

TheInfoList



OR:

Glutamate decarboxylase or glutamic acid decarboxylase (GAD) is an
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
that catalyzes the
decarboxylation Decarboxylation is a chemical reaction that removes a carboxyl group and releases carbon dioxide (CO2). Usually, decarboxylation refers to a reaction of carboxylic acids, removing a carbon atom from a carbon chain. The reverse process, which is ...
of
glutamate Glutamic acid (symbol Glu or E; known as glutamate in its anionic form) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that ...
to
gamma-aminobutyric acid GABA (gamma-aminobutyric acid, γ-aminobutyric acid) is the chief inhibitory neurotransmitter in the developmentally mature mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system. GA ...
(GABA) and carbon dioxide (). GAD uses
pyridoxal-phosphate Pyridoxal phosphate (PLP, pyridoxal 5'-phosphate, P5P), the active form of vitamin B6, is a coenzyme in a variety of enzymatic reactions. The International Union of Biochemistry and Molecular Biology has catalogued more than 140 PLP-dependent ...
(PLP) as a cofactor. The reaction proceeds as follows: : In mammals, GAD exists in two
isoform A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene and are the result of genetic differences. While many perform the same or similar biological roles, some isoforms have uniqu ...
s with molecular weights of 67 and 65
kDa The dalton or unified atomic mass unit (symbols: Da or u, respectively) is a unit of mass defined as of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest. It is a non-SI unit accepted f ...
(GAD67 and GAD65), which are encoded by two different
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
s on different
chromosome A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most import ...
s (''
GAD1 Glutamate decarboxylase 1 (brain, 67kDa) (GAD67), also known as GAD1, is a human gene. This gene encodes one of several forms of glutamic acid decarboxylase, identified as a major autoantigen in insulin-dependent diabetes. The enzyme encoded is ...
'' and ''
GAD2 Glutamate decarboxylase 2 is an enzyme that in humans is encoded by the ''GAD2'' gene. This gene encodes one of several forms of glutamic acid decarboxylase, identified as a major autoantigen in insulin-dependent diabetes. The enzyme encoded is ...
'' genes, chromosomes 2 and 10 in humans, respectively). GAD67 and GAD65 are expressed in the brain where GABA is used as a
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a Chemical synapse, synapse. The cell receiving the signal, or target cell, may be another neuron, but could also be a gland or muscle cell. Neurotra ...
, and they are also expressed in the
insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (''INS)'' gene. It is the main Anabolism, anabolic hormone of the body. It regulates the metabol ...
-producing β-cells of the
pancreas The pancreas (plural pancreases, or pancreata) is an Organ (anatomy), organ of the Digestion, digestive system and endocrine system of vertebrates. In humans, it is located in the abdominal cavity, abdomen behind the stomach and functions as a ...
, in varying ratios depending upon the species. Together, these two enzymes maintain the major physiological supply of GABA in mammals, though it may also be synthesized from
putrescine Putrescine is an organic compound with the formula (CH2)4(NH2)2. It is a colorless solid that melts near room temperature. It is classified as a diamine. Together with cadaverine, it is largely responsible for the foul odor of Putrefaction, putref ...
in the
enteric nervous system The enteric nervous system (ENS) is one of the three divisions of the autonomic nervous system (ANS), the others being the sympathetic nervous system (SNS) and parasympathetic nervous system (PSNS). It consists of a mesh-like system of neurons th ...
, brain, and elsewhere by the actions of diamine oxidase and aldehyde dehydrogenase 1a1. Several truncated transcripts and
polypeptide Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty ...
s of GAD67 are detectable in the developing brain, however their function, if any, is unknown.


Structure and mechanism

Both isoforms of GAD are homodimeric structures, consisting of three primary domains: the PLP, C-terminal and N-terminal domains. The PLP-binding domain of this enzyme adopts a type I PLP-dependent transferase-like fold. The reaction proceeds via the canonical mechanism, involving Schiff base linkage between PLP and Lys405. PLP is held in place through base-stacking with an adjacent histidine residue, and GABA is positioned such that its carboxyl group forms a salt bridge with arginine and a hydrogen bond with glutamine. Dimerization is essential to maintaining function as the active site is found at this interface, and mutations interfering with optimal association between the 2 chains has been linked to pathology, such as schizophrenia. Interference of dimerization by GAD inhibitors such as 2-keto-4-pentenoic acid (KPA) and ethyl ketopentenoate (EKP) were also shown to lead to dramatic reductions in GABA production and incidence of seizures. Catalytic activity is mediated by a short flexible loop at the dimer interface (residues 432–442 in GAD67, and 423–433 in GAD65). In GAD67 this loop remains tethered, covering the active site and providing a catalytic environment to sustain GABA production; its mobility in GAD65 promotes a side reaction that results in release of PLP, leading to autoinactivation. The conformation of this loop is intimately linked to the C-terminal domain, which also affects the rate of autoinactivation. Moreover, GABA-bound GAD65 is intrinsically more flexible and exists as an ensemble of states, thus providing more opportunities for autoantigenicity as seen in Type 1 diabetes. GAD derived from ''
Escherichia coli ''Escherichia coli'' ( )Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus '' Escherichia'' that is commonly fo ...
'' shows additional structural intricacies, including a pH-dependent conformational change. This behavior is defined by the presence of a triple helical bundle formed by the N-termini of the hexameric protein in acidic environments.


Regulation of GAD65 and GAD67

Despite an extensive sequence similarity between the two genes, GAD65 and GAD67 fulfill very different roles within the human body. Additionally, research suggests that GAD65 and GAD67 are regulated by distinctly different cellular mechanisms. GAD65 and GAD67 synthesize GABA at different locations in the cell, at different developmental times, and for functionally different purposes. GAD67 is spread evenly throughout the cell while GAD65 is localized to nerve terminals. GAD67 synthesizes GABA for neuron activity unrelated to neurotransmission, such as synaptogenesis and protection from neural injury. This function requires widespread, ubiquitous presence of GABA. GAD65, however, synthesizes GABA for neurotransmission, and therefore is only necessary at nerve terminals and synapses. In order to aid in neurotransmission, GAD65 forms a complex with heat shock cognate 70 (HSC70), cysteine string protein (CSP) and vesicular GABA transporter VGAT, which, as a complex, helps package GABA into vesicles for release during neurotransmission. GAD67 is transcribed during early development, while GAD65 is not transcribed until later in life. This developmental difference in GAD67 and GAD65 reflects the functional properties of each isoform; GAD67 is needed throughout development for normal cellular functioning, while GAD65 is not needed until slightly later in development when synaptic inhibition is more prevalent. GAD67 and GAD65 are also regulated differently post-translationally. Both GAD65 and GAD67 are regulated via phosphorylation of a dynamic catalytic loop, but the regulation of these isoforms differs; GAD65 is activated by phosphorylation while GAD67 is inhibited by phosphorylation. GAD67 is predominantly found activated (~92%), whereas GAD65 is predominantly found inactivated (~72%). GAD67 is phosphorylated at threonine 91 by protein kinase A (PKA), while GAD65 is phosphorylated, and therefore regulated by, protein kinase C (PKC). Both GAD67 and GAD65 are also regulated post-translationally by pyridoxal 5’-phosphate (PLP); GAD is activated when bound to PLP and inactive when not bound to PLP. Majority of GAD67 is bound to PLP at any given time, whereas GAD65 binds PLP when GABA is needed for neurotransmission. This reflects the functional properties of the two isoforms; GAD67 must be active at all times for normal cellular functioning, and is therefore constantly activated by PLP, while GAD65 must only be activated when GABA neurotransmission occurs, and is therefore regulated according to the synaptic environment. Studies with mice also show functional differences between Gad67 and Gad65. GAD67−/− mice are born with cleft palate and die within a day after birth while GAD65−/− mice survive with a slightly increased tendency in seizures. Additionally, GAD65+/- have symptoms defined similarly to
attention deficit hyperactivity disorder Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterised by symptoms of inattention, hyperactivity, impulsivity, and emotional dysregulation that are excessive and pervasive, impairing in multiple con ...
(ADHD) in humans.


Role in the nervous system

Both GAD67 and GAD65 are present in all types of synapses within the human nervous system. This includes dendrodendritic, axosomatic, and axodendritic synapses. Preliminary evidence suggests that GAD65 is dominant in the visual and neuroendocrine systems, which undergo more phasic changes. It is also believed that GAD67 is present at higher amounts in tonically active neurons.


Role in pathology


Autism

Both GAD65 and GAD67 experience significant downregulation in cases of
autism Autism, also known as autism spectrum disorder (ASD), is a neurodevelopmental disorder characterized by differences or difficulties in social communication and interaction, a preference for predictability and routine, sensory processing d ...
. In a comparison of autistic versus control brains, GAD65 and GAD67 experienced a downregulation average of 50% in parietal and cerebellar cortices of autistic brains. Cerebellar
Purkinje cell Purkinje cells or Purkinje neurons, named for Czech physiologist Jan Evangelista Purkyně who identified them in 1837, are a unique type of prominent, large neuron located in the Cerebellum, cerebellar Cortex (anatomy), cortex of the brain. Wi ...
s also reported a 40% downregulation, suggesting that affected cerebellar nuclei may disrupt output to higher order motor and cognitive areas of the brain.


Diabetes

Both GAD67 and GAD65 are targets of
autoantibodies An autoantibody is an antibody (a type of protein) produced by the immune system that is directed against one or more of the individual's own proteins. Many autoimmune diseases (notably lupus erythematosus) are associated with such antibodies. Pr ...
in people who later develop type 1
diabetes mellitus Diabetes mellitus, commonly known as diabetes, is a group of common endocrine diseases characterized by sustained hyperglycemia, high blood sugar levels. Diabetes is due to either the pancreas not producing enough of the hormone insulin, or th ...
or latent autoimmune diabetes. Injections with GAD65 in ways that induce immune tolerance have been shown to prevent type 1 diabetes in rodent models. In clinical trials, injections with GAD65 have been shown to preserve some insulin production for 30 months in humans with type 1 diabetes. A Cochrane
systematic review A systematic review is a scholarly synthesis of the evidence on a clearly presented topic using critical methods to identify, define and assess research on the topic. A systematic review extracts and interprets data from published studies on ...
also examined 1 study showing improvement of C-peptide levels in cases of Latent Autoimmune Diabetes in adults, 5 years following treatment with GAD65. Still, it is important to highlight that the studies available to be included in this review presented considerable flaws in quality and design.


Stiff person syndrome

High
titer Titer (American English) or titre (British English) is a way of expressing concentration. Titer testing employs serial dilution to obtain approximate quantitative information from an analytical procedure that inherently only evaluates as positi ...
s of autoantibodies to glutamic acid decarboxylase (GAD) are well documented in association with stiff person syndrome (SPS). Glutamic acid decarboxylase is the rate-limiting enzyme in the synthesis of γ-aminobutyric acid (GABA), and impaired function of GABAergic neurons has been implicated in the pathogenesis of SPS. Autoantibodies to GAD might be the causative agent or a disease marker.


Schizophrenia and bipolar disorder

Substantial dysregulation of GAD
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
expression, coupled with downregulation of
reelin Reelin, encoded by the ''RELN'' gene, is a large secreted extracellular matrix glycoprotein that helps regulate processes of neuronal migration and positioning in the developing brain by controlling cell–cell interactions. Besides this importa ...
, is observed in
schizophrenia Schizophrenia () is a mental disorder characterized variously by hallucinations (typically, Auditory hallucination#Schizophrenia, hearing voices), delusions, thought disorder, disorganized thinking and behavior, and Reduced affect display, f ...
and
bipolar disorder Bipolar disorder (BD), previously known as manic depression, is a mental disorder characterized by periods of Depression (mood), depression and periods of abnormally elevated Mood (psychology), mood that each last from days to weeks, and in ...
. The most pronounced downregulation of GAD67 was found in hippocampal
stratum oriens Hippocampus anatomy describes the physical aspects and properties of the hippocampus, a neural structure in the medial temporal lobe of each cerebral hemisphere of the brain. It has a distinctive, curved shape that has been likened to the se ...
layer in both disorders and in other layers and structures of hippocampus with varying degrees. GAD67 is a key enzyme involved in the synthesis of inhibitory neurotransmitter
GABA GABA (gamma-aminobutyric acid, γ-aminobutyric acid) is the chief inhibitory neurotransmitter in the developmentally mature mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system. GA ...
and people with schizophrenia have been shown to express lower amounts of GAD67 in the
dorsolateral prefrontal cortex The dorsolateral prefrontal cortex (DLPFC or DL-PFC) is an area in the prefrontal cortex of the primate brain. It is one of the most recently derived parts of the human brain. It undergoes a prolonged period of maturation which lasts into adulthoo ...
compared to healthy controls. The mechanism underlying the decreased levels of GAD67 in people with schizophrenia remains unclear. Some have proposed that an immediate early gene, Zif268, which normally binds to the promoter region of GAD67 and increases transcription of GAD67, is lower in schizophrenic patients, thus contributing to decreased levels of GAD67. Since the dorsolateral prefrontal cortex (DLPFC) is involved in working memory, and GAD67 and Zif268 mRNA levels are lower in the DLPFC of schizophrenic patients, this molecular alteration may account, at least in part, for the working memory impairments associated with the disease.


Parkinson disease

The bilateral delivery of
glutamic acid decarboxylase Glutamate decarboxylase or glutamic acid decarboxylase (GAD) is an enzyme that catalyzes the decarboxylation of glutamate to gamma-aminobutyric acid (GABA) and carbon dioxide (). GAD uses pyridoxal-phosphate (PLP) as a cofactor. The reaction pr ...
(GAD) by an adeno-associated viral vector into the subthalamic nucleus of patients between 30 and 75 years of age with advanced, progressive, levodopa-responsive Parkinson disease resulted in significant improvement over baseline during the course of a six-month study.


Cerebellar disorders

Intracerebellar administration of GAD autoantibodies to animals increases the excitability of motoneurons and impairs the production of
nitric oxide Nitric oxide (nitrogen oxide, nitrogen monooxide, or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes den ...
(NO), a molecule involved in learning. Epitope recognition contributes to cerebellar involvement. Reduced GABA levels increase glutamate levels as a consequence of lower inhibition of subtypes of GABA receptors. Higher glutamate levels activate microglia and activation of xc(−) increases the extracellular glutamate release.


Neuropathic pain

Peripheral nerve injury of the sciatic nerve (a
neuropathic pain Neuropathic pain is pain caused by a lesion or disease of the somatosensory nervous system. Neuropathic pain may be associated with abnormal sensations called dysesthesia or pain from normally non-painful stimuli (allodynia). It may have continuo ...
model) induces a transient loss of GAD65 immunoreactive terminals in the
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue that extends from the medulla oblongata in the lower brainstem to the lumbar region of the vertebral column (backbone) of vertebrate animals. The center of the spinal c ...
dorsal horn and suggests a potential involvement for these alterations in the development and amelioration of pain behaviour.


Other anti-GAD-associated neurologic disorders

Antibodies directed against glutamic acid decarboxylase (GAD) are increasingly found in patients with other symptoms indicative of central nervous system (CNS) dysfunction, such as
ataxia Ataxia (from Greek α- negative prefix+ -τάξις rder= "lack of order") is a neurological sign consisting of lack of voluntary coordination of muscle movements that can include gait abnormality, speech changes, and abnormalities in e ...
, progressive encephalomyelitis with rigidity and myoclonus (PERM),
limbic encephalitis Limbic encephalitis is a form of encephalitis, a disease characterized by inflammation of the brain. Limbic encephalitis is caused by autoimmunity: an abnormal state where the body produces antibodies against itself. Some cases are associated with ...
, and
epilepsy Epilepsy is a group of Non-communicable disease, non-communicable Neurological disorder, neurological disorders characterized by a tendency for recurrent, unprovoked Seizure, seizures. A seizure is a sudden burst of abnormal electrical activit ...
. The pattern of anti-GAD antibodies in epilepsy differs from type 1 diabetes and stiff-person syndrome.


Role of glutamate decarboxylase in other organisms

Besides the synthesis of GABA, GAD has additional functions and structural variations that are organism-dependent. In ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungal microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have be ...
'', GAD binds the Ca2+ regulatory protein
calmodulin Calmodulin (CaM) (an abbreviation for calcium-modulated protein) is a multifunctional intermediate calcium-binding messenger protein expressed in all Eukaryote, eukaryotic cells. It is an intracellular target of the Second messenger system, sec ...
(CaM) and is also involved in responding to oxidative stress. Similarly, GAD in plants binds calmodulin as well. This interaction occurs at the 30-50bp CAM-binding domain (CaMBD) in its C terminus and is necessary for proper regulation of GABA production. Unlike vertebrates and invertebrates, the GABA produced by GAD is used in plants to signal abiotic stress by controlling levels of intracellular Ca2+ via CaM. Binding to CaM opens Ca2+ channels and leads to an increase in Ca2+ concentrations in the cytosol, allowing Ca2+ to act as a secondary messenger and activate downstream pathways. When GAD is not bound to CaM, the CaMBD acts as an autoinhibitory domain, thus deactivating GAD in the absence of stress. Interesting, in two plant species, rice and apples, Ca2+ /CAM-independent GAD isoforms have been discovered. The C-terminus of these isoforms contain substitutions at key residues necessary to interact with CaM in the CaMBD, preventing the protein from binding to GAD. Whereas CaMBD of the isoform in rice still functions as an autoinhibitory domain, the C-terminus in the isoform in apples does not. Finally, the structure of plant GAD is a hexamer and has pH-dependent activity, with the optimal pH of 5.8 in multiple species. but also significant activity at pH 7.3 in the presence of CaM It is also believed that the control of glutamate decarboxylase has the prospect of improving citrus produce quality post-harvest. In Citrus plants, research has shown that glutamate decarboxylase plays a key role in citrate metabolism. With the increase of glutamate decarboxylase via direct exposure, citrate levels have been seen to significantly increase within plants, and in conjunction post-harvest quality maintenance was significantly improved, and rot rates decreased. Just like GAD in plants, GAD in ''E. coli'' has a hexamer structure and is more active under acidic pH; the pH optimum for ''E. coli'' GAD is 3.8-4.6. However, unlike plants and yeast, GAD in ''E. coli'' does not require calmodulin binding to function. There are also two isoforms of GAD, namely GadA and GadB, encoded by separate genes in ''E. coli'', although both isoforms are biochemically identical. The enzyme plays a major role in conferring acid resistance and allows bacteria to temporarily survive in highly acidic environments (pH < 2.5) like the stomach. This is done by GAD decarboxylating glutamate to GABA, which requires H+ to be uptaken as a reactant and raises the pH inside the bacteria. GABA can then be exported out of ''E. coli'' cells and contribute to increasing the pH of the nearby extracellular environments.


References


External links

*
Genetics, Expression Profiling Support GABA Deficits in Schizophrenia
- Schizophrenia Research Forum, 25 June 2007. * * {{Portal bar, Biology, border=no EC 4.1.1 Molecular neuroscience Biology of bipolar disorder GABA Glutamate (neurotransmitter)