In
mathematics, Koszul duality, named after the French mathematician
Jean-Louis Koszul
Jean-Louis Koszul (; January 3, 1921 – January 12, 2018) was a French mathematician, best known for studying geometry and discovering the Koszul complex. He was a second generation member of Bourbaki.
Biography
Koszul was educated at the in S ...
, is any of various kinds of dualities found in representation theory of
Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi iden ...
s, abstract algebras (
semisimple algebra
In ring theory, a branch of mathematics, a semisimple algebra is an associative artinian algebra over a field which has trivial Jacobson radical (only the zero element of the algebra is in the Jacobson radical). If the algebra is finite-dimensio ...
) and topology (e.g.,
equivariant cohomology In mathematics, equivariant cohomology (or ''Borel cohomology'') is a cohomology theory from algebraic topology which applies to topological spaces with a ''group action''. It can be viewed as a common generalization of group cohomology and an ord ...
). The prototype example, due to
Joseph Bernstein
Joseph Bernstein (sometimes spelled I. N. Bernshtein; he, יוס(י)ף נאומוביץ ברנשטיין; russian: Иосиф Наумович Бернштейн; born 18 April 1945) is a Soviet-born Israeli mathematician working at Tel Aviv Un ...
,
Israel Gelfand
Israel Moiseevich Gelfand, also written Israïl Moyseyovich Gel'fand, or Izrail M. Gelfand ( yi, ישראל געלפֿאַנד, russian: Изра́иль Моисе́евич Гельфа́нд, uk, Ізраїль Мойсейович Гел� ...
, and Sergei Gelfand, is the rough duality between the
derived category
In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction pro ...
of a
symmetric algebra
In mathematics, the symmetric algebra (also denoted on a vector space over a field is a commutative algebra over that contains , and is, in some sense, minimal for this property. Here, "minimal" means that satisfies the following universa ...
and that of an
exterior algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is ...
. The importance of the notion rests on the suspicion that Koszul duality seems quite ubiquitous in nature.
Koszul duality for modules over Koszul algebras
The simplest, and in a sense prototypical case of Koszul duality arises as follows: for a 1-dimensional vector space ''V'' over a field ''k'', with
dual vector space
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by con ...
, the
exterior algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is ...
of ''V'' has two non-trivial components, namely
:
This exterior algebra and the
symmetric algebra
In mathematics, the symmetric algebra (also denoted on a vector space over a field is a commutative algebra over that contains , and is, in some sense, minimal for this property. Here, "minimal" means that satisfies the following universa ...
of
,
, serve to build a two-step
chain complex
In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or modules) and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of ...
:
whose differential is induced by natural evaluation map
:
Choosing a basis of ''V'',
can be identified with the
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variable ...
in one variable,