Karyorrhexis
   HOME

TheInfoList



OR:

Karyorrhexis (from
Greek Greek may refer to: Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group *Greek language, a branch of the Indo-European language family **Proto-Greek language, the assumed last common ancestor of all kno ...
κάρυον ''karyon'' 'kernel, seed, nucleus' and ῥῆξις ''rhexis'' 'bursting') is the destructive fragmentation of the nucleus of a dying cell whereby its chromatin is distributed irregularly throughout the cytoplasm. It is usually preceded by
pyknosis Pyknosis, or karyopyknosis, is the irreversible condensation of chromatin in the Cell nucleus, nucleus of a cell (biology), cell undergoing necrosis or apoptosis. It is followed by karyorrhexis, or fragmentation of the nucleus. Pyknosis (from Ancie ...
and can occur as a result of either
programmed cell death Programmed cell death (PCD) sometimes referred to as cell, or cellular suicide is the death of a cell (biology), cell as a result of events inside of a cell, such as apoptosis or autophagy. PCD is carried out in a biological process, which usual ...
(apoptosis),
cellular senescence Cellular senescence is a phenomenon characterized by the cessation of cell division. In their experiments during the early 1960s, Leonard Hayflick and Paul Moorhead found that normal human fetal fibroblasts in culture reach a maximum of appro ...
, or
necrosis Necrosis () is a form of cell injury which results in the premature death of cells in living tissue by autolysis. The term "necrosis" came about in the mid-19th century and is commonly attributed to German pathologist Rudolf Virchow, who i ...
. In
apoptosis Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
, the cleavage of
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
is done by Ca2+ and Mg2+ -dependent
endonucleases In molecular biology, endonucleases are enzymes that cleave the phosphodiester bond within a polynucleotide chain (namely DNA or RNA). Some, such as deoxyribonuclease I, cut DNA relatively nonspecifically (with regard to sequence), while many, t ...
. Image:nuclear changes.jpg, Morphological characteristics of pyknosis and other forms of nuclear destruction. File:Apoptotic neutrophil with nuclear fragmentation.jpg, Microscopy of an apoptotic neutrophil with nuclear fragmentation (H&E stain)


Overview

During
apoptosis Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
, a cell goes through a series of steps as it eventually breaks down into apoptotic bodies, which undergo
phagocytosis Phagocytosis () is the process by which a cell (biology), cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs ph ...
. In the context of karyorrhexis, these steps are, in chronological order,
pyknosis Pyknosis, or karyopyknosis, is the irreversible condensation of chromatin in the Cell nucleus, nucleus of a cell (biology), cell undergoing necrosis or apoptosis. It is followed by karyorrhexis, or fragmentation of the nucleus. Pyknosis (from Ancie ...
(the irreversible condensation of chromatin), karyorrhexis (fragmentation of the nucleus and condensed DNA) and karyolysis (dissolution of the chromatin due to endonucleases). Karyorrhexis involves the breakdown of the nuclear envelope and the fragmentation of condensed chromatin due to endonucleases. In cases of apoptosis, karyorrhexis ensures that nuclear fragments are quickly removed by phagocytes. In necrosis, however, this step fails to progress in an orderly manner, leaving behind fragmented cellular debris, further contributing to tissue damage and inflammation.


Process of Nuclear Envelope Dissolution During Karyorrhexis

In the intrinsic pathway of apoptosis, environmental factors such as
oxidative stress Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...
signal pro-apoptotic members of the Bcl-2 protein family to eventually break the outer membrane of the mitochondria. This causes cytochrome c to leak into the cytoplasm, which causes a cascade of events that eventually leads to the activation of several caspases. One of these caspases, caspase-6, is known to cleave nuclear lamina proteins such as lamin A/C, which hold the nuclear envelope together, thereby aiding in the dissolution of the nuclear envelope.


Process of Condensed Chromatin Fragmentation During Karyorrhexis

In the process of karyorrhexis through apoptosis, DNA is fragmented in an orderly manner by endonucleases such as caspase-activated DNase and discrete nucleosomal units are formed. This is because the DNA has already been condensed during pyknosis, meaning it has been wrapped around
histones In biology, histones are highly Base (chemistry), basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaea, Archaeal Phylum, phyla. They act as spools around which DNA winds to create st ...
in an organized manner, with around 180 base pairs per histone. The fragmented chromatin observed during karyorrhexis is made when activated endonucleases cleave the DNA in between the histones, resulting in orderly, discrete nucleosomal units. These short DNA fragments left by the endonucleases can be identified on an agar gel during electrophoresis due to their unique “laddered” appearance, allowing researchers to better identify cell death through apoptosis.


Nucleus Degradation in Other Forms of Cell Death

Karyorrhexis is associated with a controlled breakdown of the nuclear envelope, typically by caspases that destroy
lamins Lamins, also known as nuclear lamins, are fibrous proteins in type V intermediate filaments, providing structural function and transcriptional regulation in the cell nucleus. Nuclear lamins interact with inner nuclear membrane proteins to fo ...
during apoptosis. However, for other forms of cell death that are less controlled than apoptosis, such as
necrosis Necrosis () is a form of cell injury which results in the premature death of cells in living tissue by autolysis. The term "necrosis" came about in the mid-19th century and is commonly attributed to German pathologist Rudolf Virchow, who i ...
(unprogrammed cell death), the degradation of the nucleus is caused by other factors. Unlike apoptosis, necrosis cells are characterized by having a ruptured plasma membrane, no association with the activation of caspases, and typically invoking an inflammatory response. Because necrosis is a caspase-independent process, the nucleus may stay intact during early stages of cell death before being ripped open due to osmotic stress and other factors associated with having a hole in the plasma membrane. A specialized form of necrosis, called necroptosis, has a slightly more controlled degradation of the nucleus. This process is dependent on calpain, which is a
protease A protease (also called a peptidase, proteinase, or proteolytic enzyme) is an enzyme that catalysis, catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products ...
that also degrades lamins, destabilizing the structure of the nucleus. However, similar to necrosis, this process also involves a ruptured plasma membrane, which contributes to the uncontrolled degradation of the nuclear envelope. Unlike karyorrhexis in apoptosis which produces apoptotic bodies to be digested through phagocytosis, karyorrhexis in necroptosis leads to the expulsion of cell contents into extracellular space to be digested through
pinocytosis In cellular biology, pinocytosis, otherwise known as fluid endocytosis and bulk-phase pinocytosis, is a mode of endocytosis in which small molecules dissolved in extracellular fluid are brought into the cell through an invagination of the cell me ...
.


Triggers and Mechanisms

The process of apoptosis, and thereby nucleus degradation through karyorrhexis, is invoked by various physiological and pathological stimuli. DNA damage, oxidative stress, hypoxia, and infections can initiate signaling cascades leading to nuclear degradation through the intrinsic pathway of apoptosis. The intrinsic pathway can also be induced through
ethanol Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound with the chemical formula . It is an Alcohol (chemistry), alcohol, with its formula also written as , or EtOH, where Et is the ps ...
, which activates apoptosis-related proteins such as BAX and caspases. Additionally, if the death receptors on a cell’s surface are activated, such as
CD95 The Fas receptor, also known as Fas, FasR, apoptosis antigen 1 (APO-1 or APT), cluster of differentiation 95 (CD95) or tumor necrosis factor receptor superfamily member 6 (TNFRSF6), is a protein that in humans is encoded by the ''FAS'' gene. Fas ...
, the activation of caspases and nuclear envelope degradation can be triggered as well. In all of these processes, caspases such as caspase-3 play a key role by cleaving nuclear lamins and promoting chromatin fragmentation. In necrosis, uncontrolled calcium influx and activation of proteases such as calpains accelerate the process, highlighting the contrasting regulatory mechanisms between necrotic and apoptotic karyorrhexis. The level of DNA damage determines whether a cell undergoes apoptosis or cell senescence. Cellular senescence refers to the cessation of the cell cycle and thus cell division, which can be observed after a fixed amount (approximately 50) of doublings in primary cells. One cause of cellular senescence is DNA damage through the shortening of telomeres. This causes a DNA damage response (DDR), which, if prolonged over a long period of time, activates ATR and ATM damage kinases. These kinases activate two more kinases, Chk1 and
Chk2 CHEK2 (Checkpoint kinase 2) is a tumor suppressor gene that encodes the protein CHK2, a serine-threonine kinase. CHK2 is involved in DNA repair, cell cycle arrest or apoptosis in response to DNA damage. Mutations to the CHEK2 gene have been link ...
kinases, which can alter the cell in a few different ways. One of these ways is by activating a transcription factor known as p53. If the level of DNA damage is mild, the p53 will opt to activate CIP, which inhibits CDKs, arresting the cell cycle. However, if the level of DNA damage is severe enough, p53 can trigger apoptotic pathways which lead to the dissolution of the nuclear envelope through karyorrhexis.


Pathological Implications

Karyorrhexis is a prominent feature in conditions related to cell death, such as
ischemia Ischemia or ischaemia is a restriction in blood supply to any tissue, muscle group, or organ of the body, causing a shortage of oxygen that is needed for cellular metabolism (to keep tissue alive). Ischemia is generally caused by problems ...
and
neurodegenerative disorders A neurodegenerative disease is caused by the progressive loss of neurons, in the process known as neurodegeneration. Neuronal damage may also ultimately result in their death. Neurodegenerative diseases include amyotrophic lateral sclerosis, mul ...
. It has been observed during
myocardial infarction A myocardial infarction (MI), commonly known as a heart attack, occurs when Ischemia, blood flow decreases or stops in one of the coronary arteries of the heart, causing infarction (tissue death) to the heart muscle. The most common symptom ...
and brain stroke, indicating its contribution to cell death in acute stress responses. Moreover, disorders such as placental vascular malperfusion have highlighted the role of karyorrhexis in fetal demise, particularly when it disrupts normal tissue homeostasis. In cancer, apoptotic karyorrhexis plays a dual role. While it facilitates controlled cell death, aiding in tumor suppression, resistance to apoptosis in cancer cells results in evasion of this pathway, promoting malignancy. Therapeutic interventions targeting apoptotic pathways attempt to restore this phase of nuclear degradation to induce tumor regression.


See also

* Karyolysis


References

{{Pathology Cellular processes Cellular senescence Programmed cell death