HOME

TheInfoList



OR:

In biology, juxtracrine signalling (or contact-dependent signalling) is a type of cell–cell or cell–
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bio ...
signalling A signal is both the process and the result of transmission of data over some media accomplished by embedding some variation. Signals are important in multiple subject fields including signal processing, information theory and biology. In ...
in
multicellular A multicellular organism is an organism that consists of more than one cell (biology), cell, unlike unicellular organisms. All species of animals, Embryophyte, land plants and most fungi are multicellular, as are many algae, whereas a few organism ...
organisms that requires close contact. In this type of signalling, a ligand on one surface binds to a receptor on another adjacent surface. Hence, this stands in contrast to releasing a signaling molecule by
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
into extracellular space, the use of long-range conduits like membrane nanotubes and
cytoneme Cytonemes are thin, cellular projections that are specialized for exchange of signaling proteins between cells. Cytonemes emanate from cells that make signaling proteins, extending directly to cells that receive signaling proteins. Cytonemes also ...
s (akin to 'bridges') or the use of extracellular vesicles like exosomes or microvesicles (akin to 'boats'). There are three types of juxtracrine signaling: # A membrane-bound
ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
(
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
,
oligosaccharide An oligosaccharide (; ) is a carbohydrate, saccharide polymer containing a small number (typically three to ten) of monosaccharides (simple sugars). Oligosaccharides can have many functions including Cell–cell recognition, cell recognition and ce ...
,
lipid Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing ...
) and a
membrane protein Membrane proteins are common proteins that are part of, or interact with, biological membranes. Membrane proteins fall into several broad categories depending on their location. Integral membrane proteins are a permanent part of a cell membrane ...
of two adjacent cells interact. # A communicating junction links the intracellular compartments of two adjacent cells, allowing transit of relatively small molecules. # An
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bio ...
glycoprotein Glycoproteins are proteins which contain oligosaccharide (sugar) chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known a ...
and a membrane protein interact. Additionally, in
unicellular A unicellular organism, also known as a single-celled organism, is an organism that consists of a single cell, unlike a multicellular organism that consists of multiple cells. Organisms fall into two general categories: prokaryotic organisms and ...
organisms such as
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
, juxtracrine signaling refers to interactions by membrane contact. Juxtracrine signaling has been observed for some
growth factor A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for ...
s,
cytokine Cytokines () are a broad and loose category of small proteins (~5–25 kDa) important in cell signaling. Cytokines are produced by a broad range of cells, including immune cells like macrophages, B cell, B lymphocytes, T cell, T lymphocytes ...
and chemokine cellular signals, playing an important role in the
immune response An immune response is a physiological reaction which occurs within an organism in the context of inflammation for the purpose of defending against exogenous factors. These include a wide variety of different toxins, viruses, intra- and extracellula ...
. Juxtracrine signaling is also involved in cell specification, or determination of a
cell fate determination Within the field of developmental biology, one goal is to understand how a particular cell develops into a specific cell type, known as fate determination. In an embryo, several processes play out at a molecular level to create an organism. These pr ...
through a process called induction. In this process, the inducing cells send a signal to responder cells that receive the signal to activate the process of responder's cell fate determination. This cell-to-cell communication plays a role in many developmental processes, such as patterning of the embryos, establishing of cell type diversity, organogenesis, and formation of tissues in various organisms. It has a critical role in development, particularly of cardiac and neural function. Other types of cell signaling include paracrine signalling and autocrine signalling. Paracrine signaling occurs over short distances, while autocrine signaling involves a cell responding to its own paracrine factors. The term "juxtracrine" was originally introduced by Anklesaria ''et al.'' (1990) to describe a possible way of signal transduction between TGF alpha and EGFR.


Cell–cell signaling

In this type of signaling, specific membrane-bound ligands bind to a cell’s membrane. A cell with the appropriate
cell surface receptor Cell surface receptors (membrane receptors, transmembrane receptors) are receptors that are embedded in the plasma membrane of cells. They act in cell signaling by receiving (binding to) extracellular molecules. They are specialized integra ...
or cell adhesion molecule can bind to it. Cell-cell signaling can be extrinsic and intrinsic to the cells. Intrinsic signaling indicates that cells connect more directly with the help of cadherins, ephrins, and Notch-Delta signaling pathway, thus, more intrinsically with the cell defined machinery. Juxtracrine signaling is considered an intrinsic cell-to-cell signaling as cells communicate through surface level proteins. External cell-cell signaling involves bringing out information in or out of the cell without any direct contact with cell structures, except the binding sites for the signaling molecules. Such cell-cell signaling is utilized by the paracrine and autocrine signaling. Some of the cell signaling pathways that are involved in cell-to-cell communication include: Notch-Delta, FGF, Wnt, EGF, TGF-beta, Hedgehog, Hippo, Jun kinase, Nf-kB, and retinoic acid receptor. Of all these pathways, juxtracrine signaling utilizes Notch and Hippo the most as they involve a more direct cell-to-cell contact signaling.
Notch signaling pathway The Notch signaling pathway is a highly Conserved sequence, conserved cell signaling system present in most animal, animals. Mammals possess four different Notch proteins, notch receptors, referred to as NOTCH1, NOTCH2, Notch 3, NOTCH3, and NOTC ...
, notably involved in neural development. In the Notch signaling pathway for vertebrates and ''Drosophila'', the receiving cell is told not to become neural through the binding of Delta and Notch. Within the eye of vertebrates, which cells become optic neurons and which become glial cells is regulated by Notch and its ligands. Some cells, like ephrin-Eph, are only able to communicate through juxtacrine signaling. Eph ligands can only activate receptors when bound to a membrane. This is because a high density of the Eph ligand is necessary for the receptor to bind to it. Ephrin-Eph is used for axon guidance, angiogenesis, and epithelial and neuronal cell migration.


Communicating junctions

Two adjacent cells can construct communicating conduits between their intracellular compartments:
gap junction Gap junctions are membrane channels between adjacent cells that allow the direct exchange of cytoplasmic substances, such small molecules, substrates, and metabolites. Gap junctions were first described as ''close appositions'' alongside tight ...
s in
animal Animals are multicellular, eukaryotic organisms in the Biology, biological Kingdom (biology), kingdom Animalia (). With few exceptions, animals heterotroph, consume organic material, Cellular respiration#Aerobic respiration, breathe oxygen, ...
s and
plasmodesma Plasmodesmata (singular: plasmodesma) are microscopic channels which traverse the cell walls of plant cells and some algal cells, enabling transport and communication between them. Plasmodesmata evolved independently in several lineages, and spec ...
s in
plant Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they are predominantly Photosynthesis, photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with c ...
s. Gap junctions are made of
connexin Connexins (Cx)TC# 1.A.24, or gap junction proteins, are structurally related transmembrane proteins that assemble to form vertebrate gap junctions. An entirely different family of proteins, the innexins, forms gap junctions in invertebrates. Eac ...
s in
vertebrate Vertebrates () are animals with a vertebral column (backbone or spine), and a cranium, or skull. The vertebral column surrounds and protects the spinal cord, while the cranium protects the brain. The vertebrates make up the subphylum Vertebra ...
s and innexins in
invertebrate Invertebrates are animals that neither develop nor retain a vertebral column (commonly known as a ''spine'' or ''backbone''), which evolved from the notochord. It is a paraphyletic grouping including all animals excluding the chordata, chordate s ...
s.
Electrical synapse An electrical synapse, or gap junction, is a mechanical and electrically conductive synapse, a functional junction between two neighboring neurons. The synapse is formed at a narrow gap between the pre- and postsynaptic neurons known as a gap junc ...
s are electrically
conductive In physics and electrical engineering, a conductor is an object or type of material that allows the flow of Electric charge, charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. The flow ...
gap junctions between
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s. Gap junctions are critical for cardiac
myocyte A muscle cell, also known as a myocyte, is a mature contractile Cell (biology), cell in the muscle of an animal. In humans and other vertebrates there are three types: skeletal muscle, skeletal, smooth muscle, smooth, and Cardiac muscle, cardiac ...
s; mice and humans deficient in a particular gap junction protein have severe heart development defects. Plasmodesmas in plants are cytoplasmic strands that pass through cell walls and facilitate connections with adjacent cells. Plasmodesmas are highly dynamic in both strucutural modifications and biogenesis. They are able to organize cells in domains, serving as basic developmental units for plants, as well as mediate the intracellular movement of a variety of proteins and nucleic acids.


Cell–extracellular matrix signaling

The
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bio ...
is composed of
glycoprotein Glycoproteins are proteins which contain oligosaccharide (sugar) chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known a ...
s (proteins and mucopolysaccharides (glycosaminoglycan)) produced by the organism's cells. They are secreted not only to build a supportive structure but also to provide critical information on the immediate environment to nearby cells. Indeed, the cells can themselves interact by contact with extracellular matrix molecules and as such, this can be considered an indirect cell / cell communication. Cells use mainly the receptor
integrin Integrins are transmembrane receptors that help cell–cell and cell–extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, o ...
to interact with ECM proteins. Integrins are a family of receptor proteins that integrate the extracellular and intracellular structures, allowing them to perform together. This signaling can influence the
cell cycle The cell cycle, or cell-division cycle, is the sequential series of events that take place in a cell (biology), cell that causes it to divide into two daughter cells. These events include the growth of the cell, duplication of its DNA (DNA re ...
and
cellular differentiation Cellular differentiation is the process in which a stem cell changes from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellula ...
by directing which cells live or die, which cells proliferate, or which cells are able to exit the cell cycle and differentiate. Cellular differentiation involves a cell changing its phenotypical or functional type.


See also

*
Cell adhesion Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as Cell_junction, cell junc ...
, mechanical adhesion between cells and/or the extracellular matrix * Role of cell adhesions in neural development * Cell adhesion molecules * Pannexin, vertebrate proteins used to form conduits between the intracellular and extracellular space * Autocrine signalling * Paracrine signalling *
Endocrine system The endocrine system is a messenger system in an organism comprising feedback loops of hormones that are released by internal glands directly into the circulatory system and that target and regulate distant Organ (biology), organs. In vertebrat ...


References


External links


"Autocrine versus juxtacrine signaling modes"
- illustration at sysbio.org {{Cell signaling Cell signaling