In
topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, a field of
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the join of two
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s
and
, often denoted by
or
, is a topological space formed by taking the
disjoint union
In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appe ...
of the two spaces, and attaching line segments joining every point in
to every point in
. The join of a space
with itself is denoted by
. The join is defined in slightly different ways in different contexts
Geometric sets
If
and
are subsets of the
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, then:
,
that is, the set of all line-segments between a point in
and a point in
.
Some authors restrict the definition to subsets that are ''joinable'': any two different line-segments, connecting a point of A to a point of B, meet in at most a common endpoint (that is, they do not intersect in their interior). Every two subsets can be made "joinable". For example, if
is in
and
is in
, then
and
are joinable in
. The figure above shows an example for m=n=1, where
and
are line-segments.
Examples
* The join of two
simplices
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
is a simplex: the join of an ''n''-dimensional and an ''m''-dimensional simplex is an (''m''+''n''+1)-dimensional simplex. Some special cases are:
** The join of two disjoint points is an interval (''m''=''n''=0).
** The join of a point and an interval is a triangle (m=0, n=1).
** The join of two line segments is
homeomorphic
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
to a solid
tetrahedron
In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
or
disphenoid
In geometry, a disphenoid () is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same ...
, illustrated in the figure above right (''m''=''n''=1).
** The join of a point and an (''n''-1)-dimensional
simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
is an ''n''-dimensional simplex.
* The join of a point and a
polygon
In geometry, a polygon () is a plane figure made up of line segments connected to form a closed polygonal chain.
The segments of a closed polygonal chain are called its '' edges'' or ''sides''. The points where two edges meet are the polygon ...
(or any
polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
) is a
pyramid
A pyramid () is a structure whose visible surfaces are triangular in broad outline and converge toward the top, making the appearance roughly a pyramid in the geometric sense. The base of a pyramid can be of any polygon shape, such as trian ...
, like the join of a point and square is a
square pyramid
In geometry, a square pyramid is a Pyramid (geometry), pyramid with a square base and four triangles, having a total of five faces. If the Apex (geometry), apex of the pyramid is directly above the center of the square, it is a ''right square p ...
. The join of a point and a
cube
A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
is a
cubic pyramid.
* The join of a point and a
circle
A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
is a
cone
In geometry, a cone is a three-dimensional figure that tapers smoothly from a flat base (typically a circle) to a point not contained in the base, called the '' apex'' or '' vertex''.
A cone is formed by a set of line segments, half-lines ...
, and the join of a point and a
sphere
A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
is a
hypercone.
Topological spaces
If
and
are any topological spaces, then:
:
where the cylinder