HOME

TheInfoList



OR:

Ion implantation is a low-temperature process by which ions of one element are accelerated into a solid target, thereby changing the target's physical, chemical, or electrical properties. Ion implantation is used in
semiconductor device fabrication Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as microprocessors, microcontrollers, and memories (such as Random-access memory, RAM and flash memory). It is a ...
and in metal finishing, as well as in
materials science Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials sci ...
research. The ions can alter the elemental composition of the target (if the ions differ in composition from the target) if they stop and remain in the target. Ion implantation also causes chemical and physical changes when the ions impinge on the target at high energy. The
crystal structure In crystallography, crystal structure is a description of ordered arrangement of atoms, ions, or molecules in a crystalline material. Ordered structures occur from intrinsic nature of constituent particles to form symmetric patterns that repeat ...
of the target can be damaged or even destroyed by the energetic collision cascades, and ions of sufficiently high energy (tens of MeV) can cause nuclear transmutation.


General principle

Ion implantation equipment typically consists of an ion source, where ions of the desired element are produced, an accelerator, where the ions are electrostatically accelerated to a high energy or using radiofrequency, and a target chamber, where the ions impinge on a target, which is the material to be implanted. Thus ion implantation is a special case of
particle radiation Particle radiation is the radiation of energy by means of fast-moving subatomic particles. Particle radiation is referred to as a particle beam if the particles are all moving in the same direction, similar to a light beam. Due to the wave–p ...
. Each ion is typically a single atom or molecule, and thus the actual amount of material implanted in the target is the integral over time of the ion current. This amount is called the dose. The currents supplied by implants are typically small (micro-amperes), and thus the dose which can be implanted in a reasonable amount of time is small. Therefore, ion implantation finds application in cases where the amount of chemical change required is small. Typical ion energies are in the range of 10 to 500 keV (1,600 to 80,000 aJ). Energies in the range 1 to 10 keV (160 to 1,600 aJ) can be used, but result in a penetration of only a few nanometers or less. Energies lower than this result in very little damage to the target, and fall under the designation ion beam deposition. Higher energies can also be used: accelerators capable of 5 MeV (800,000 aJ) are common. However, there is often great structural damage to the target, and because the depth distribution is broad ( Bragg peak), the net composition change at any point in the target will be small. The energy of the ions, as well as the ion species and the composition of the target determine the depth of penetration of the ions in the solid: A monoenergetic ion beam will generally have a broad depth distribution. The average penetration depth is called the range of the ions. Under typical circumstances ion ranges will be between 10 nanometers and 1 micrometer. Thus, ion implantation is especially useful in cases where the chemical or structural change is desired to be near the surface of the target. Ions gradually lose their energy as they travel through the solid, both from occasional collisions with target atoms (which cause abrupt energy transfers) and from a mild drag from overlap of electron orbitals, which is a continuous process. The loss of ion energy in the target is called stopping and can be simulated with the binary collision approximation method. Accelerator systems for ion implantation are generally classified into medium current (ion beam currents between 10 μA and ~2 mA), high current (ion beam currents up to ~30 mA), high energy (ion energies above 200 keV and up to 10 MeV), and very high dose (efficient implant of dose greater than 1016 ions/cm2).


Ion source

All varieties of ion implantation beamline designs contain general groups of functional components (see image). The first major segment of an ion beamline includes an ion source used to generate the ion species. The source is closely coupled to biased electrodes for extraction of the ions into the beamline and most often to some means of selecting a particular ion species for transport into the main accelerator section. The ion source is often made of materials with a high melting point such as tungsten, tungsten doped with lanthanum oxide (lanthanated tungsten), molybdenum and tantalum. Lanthanum oxide helps extend the life of the ion source. Often, inside the ion source a plasma is created between two tungsten electrodes, called reflectors, using a gas often based on fluorine or hydrogen containing the ion to be implanted whether it is
germanium Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
,
boron Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
, or
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
, such as boron trifluoride, boron difluoride, germanium tetrafluoride or silicon tetrafluoride. Arsine gas or phosphine gas can be used in the ion source to provide arsenic or phosphorus respectively for implantation. The ion source also has an indirectly heated cathode. Alternatively this heated cathode can be used as one of the reflectors, eliminating the need for a dedicated one, or a directly heated cathode is used. Oxygen-based gases (oxides) can be used to provide ions for implantation such as carbon dioxide for implanting
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
. Hydrogen or hydrogen with xenon, krypton or argon may be added to the plasma to delay the degradation of tungsten components due to the halogen cycle. The hydrogen can come from a high pressure cylinder or from a hydrogen generator that uses electrolysis. Repellers at each end of the ion source continually move the atoms from one end of the ion source to the other, resembling two mirrors pointed at each other constantly reflecting light. The ions are extracted from the source by an extraction electrode outside the ion source through a slit shaped aperture in the source, then the ion beam then passes through an analysis magnet to select the ions that will be implanted and then passes through one or two linear accelerators (linacs) that accelerate the ions before they reach the wafer in a process chamber. In medium current ion implanters there is also a neutral ion trap before the process chamber to remove neutral ions from the ion beam. Some dopants such as aluminum, are often not provided to the ion source as a gas but as a solid compound based on Chlorine or Iodine that is vaporized in a nearby crucible such as Aluminium iodide or
Aluminium chloride Aluminium chloride, also known as aluminium trichloride, is an inorganic compound with the formula . It forms a hexahydrate with the formula , containing six water molecules of hydration. Both the anhydrous form and the hexahydrate are col ...
or as a solid sputtering target inside the ion source made of
Aluminium oxide Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several Aluminium oxide (compounds), aluminium oxides, and specifically identified as alum ...
or Aluminium nitride. Implanting antimony often requires the use of a vaporizer attached to the ion source, in which antimony trifluoride, antimony trioxide, or solid antimony are vaporized in a crucible and a carrier gas is used to route the vapors to an adjacent ion source, although it can also be implanted from a gas containing fluorine such as antimony hexafluoride or vaporized from liquid antimony pentafluoride. Gallium, Selenium and Indium are often implanted from solid sources such as selenium dioxide for selenium although it can also be implanted from hydrogen selenide. Crucibles often last 60–100 hours and prevent ion implanters from changing recipes or process parameters in less than 20–30 minutes. Ion sources can often last 300 hours. The "mass" selection (just like in
mass spectrometer Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is us ...
) is often accompanied by passage of the extracted ion beam through a magnetic field region with an exit path restricted by blocking apertures, or "slits", that allow only ions with a specific value of the product of mass and velocity/charge to continue down the beamline. If the target surface is larger than the ion beam diameter and a uniform distribution of implanted dose is desired over the target surface, then some combination of beam scanning and wafer motion is used. Finally, the implanted surface is coupled with some method for collecting the accumulated charge of the implanted ions so that the delivered dose can be measured in a continuous fashion and the implant process stopped at the desired dose level.


Application in semiconductor device fabrication


Doping

Semiconductor doping with boron, phosphorus, or arsenic is a common application of ion implantation. When implanted in a semiconductor, each dopant atom can create a charge carrier in the semiconductor after annealing. Annealing is necessary after ion implantation to activate dopants and can be carried out using a tube or batch furnace, Rapid Thermal Processing, flash lamp anneal, laser anneal or other annealing techniques. A
hole A hole is an opening in or through a particular medium, usually a solid Body (physics), body. Holes occur through natural and artificial processes, and may be useful for various purposes, or may represent a problem needing to be addressed in m ...
can be created for a p-type dopant, and an electron for an n-type dopant. This modifies the conductivity of the semiconductor in its vicinity. The technique is used, for example, for adjusting the threshold voltage of a
MOSFET upright=1.3, Two power MOSFETs in amperes">A in the ''on'' state, dissipating up to about 100 watt">W and controlling a load of over 2000 W. A matchstick is pictured for scale. In electronics, the metal–oxide–semiconductor field- ...
. Ion implantation is practical due to the high sensitivity of semiconductor devices to foreign atoms, as ion implantation does not deposit large numbers of atoms. Sometimes such as during the manufacturing of SiC devices, ion implantation is carried out while heating the SiC wafer to 500 °C. This is known as a hot implant and it is used to control damage to the surface of the semiconductor. Cryogenic implants (Cryo-implants) can have the same effect. The energies used in doping often vary from 1 KeV to 3 MeV and it is not possible to build an ion implanter capable of providing ions at any energy due to physical limitations. To increase the throughput of ion implanters, efforts have been made to increase the current of the beam created by the implanter. The beam can be scanned across the wafer magnetically, electrostatically, mechanically or with a combination of these techniques. A mass analyzer magnet is used to select the ions that will be implanted on the wafer. Ion implantation is also used in displays containing LTPS transistors. Ion implantation was developed as a method of producing the p-n junction of photovoltaic devices in the late 1970s and early 1980s, along with the use of pulsed-electron beam for rapid annealing, although pulsed-electron beam for rapid annealing has not to date been used for commercial production. Ion implantation is not used in most photovoltaic silicon cells, instead, thermal diffusion doping is used.


Silicon on insulator

One prominent method for preparing silicon on insulator (SOI) substrates from conventional
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
substrates is the ''SIMOX'' (separation by implantation of oxygen) process, wherein a buried high dose oxygen implant is converted to silicon oxide by a high temperature annealing process.


Mesotaxy

Mesotaxy is the term for the growth of a crystallographically matching phase underneath the surface of the host crystal (compare to
epitaxy Epitaxy (prefix ''epi-'' means "on top of”) is a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited cry ...
, which is the growth of the matching phase on the surface of a substrate). In this process, ions are implanted at a high enough energy and dose into a material to create a layer of a second phase, and the temperature is controlled so that the crystal structure of the target is not destroyed. The crystal orientation of the layer can be engineered to match that of the target, even though the exact crystal structure and lattice constant may be very different. For example, after the implantation of nickel ions into a silicon wafer, a layer of nickel silicide can be grown in which the crystal orientation of the silicide matches that of the silicon.


Application in metal finishing


Tool steel toughening

Nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
or other ions can be implanted into a tool steel target (drill bits, for example). The structural change caused by the implantation produces a surface compression in the steel, which prevents crack propagation and thus makes the material more resistant to fracture. The chemical change can also make the tool more resistant to
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
.


Surface finishing

In some applications, for example prosthetic devices such as artificial joints, it is desired to have surfaces very resistant to both chemical corrosion and wear due to friction. Ion implantation is used in such cases to engineer the surfaces of such devices for more reliable performance. As in the case of tool steels, the surface modification caused by ion implantation includes both a surface compression which prevents crack propagation and an alloying of the surface to make it more chemically resistant to corrosion.


Other applications


Ion beam mixing

Ion implantation can be used to achieve ion beam mixing, i.e. mixing up atoms of different elements at an interface. This may be useful for achieving graded interfaces or strengthening adhesion between layers of immiscible materials.


Ion implantation-induced

nanoparticle A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
formation

Ion implantation may be used to induce nano-dimensional particles in oxides such as
sapphire Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, cobalt, lead, chromium, vanadium, magnesium, boron, and silicon. The name ''sapphire ...
and
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundant f ...
. The particles may be formed as a result of precipitation of the ion implanted species, they may be formed as a result of the production of a mixed oxide species that contains both the ion-implanted element and the oxide substrate, and they may be formed as a result of a reduction of the substrate, first reported by Hunt and Hampikian. Typical ion beam energies used to produce nanoparticles range from 50 to 150 keV, with ion fluences that range from 1016 to 1018 ions/cm2. The table below summarizes some of the work that has been done in this field for a sapphire substrate. A wide variety of nanoparticles can be formed, with size ranges from 1 nm on up to 20 nm and with compositions that can contain the implanted species, combinations of the implanted ion and substrate, or that are comprised solely from the cation associated with the substrate. Composite materials based on dielectrics such as sapphire that contain dispersed metal nanoparticles are promising materials for optoelectronics and
nonlinear optics Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in Nonlinearity, nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity ...
.


Problems with ion implantation


Crystallographic damage

Each individual ion produces many point defects in the target crystal on impact such as vacancies and interstitials. Vacancies are crystal lattice points unoccupied by an atom: in this case the ion collides with a target atom, resulting in transfer of a significant amount of energy to the target atom such that it leaves its crystal site. This target atom then itself becomes a projectile in the solid, and can cause successive collision events. Interstitials result when such atoms (or the original ion itself) come to rest in the solid, but find no vacant space in the lattice to reside. These point defects can migrate and cluster with each other, resulting in
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sli ...
loops and other defects.


Damage recovery

Because ion implantation causes damage to the crystal structure of the target which is often unwanted, ion implantation processing is often followed by a thermal annealing. This can be referred to as damage recovery.


Amorphization

The amount of crystallographic damage can be enough to completely amorphize the surface of the target: i.e. it can become an
amorphous solid In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid) is a solid that lacks the long-range order that is a characteristic of a crystal. The terms "glass" and "glassy solid" are sometimes used synonymousl ...
(such a solid produced from a melt is called a
glass Glass is an amorphous (non-crystalline solid, non-crystalline) solid. Because it is often transparency and translucency, transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window pane ...
). In some cases, complete amorphization of a target is preferable to a highly defective crystal: An amorphized film can be regrown at a lower temperature than required to anneal a highly damaged crystal. Amorphisation of the substrate can occur as a result of the beam damage. For example, yttrium ion implantation into sapphire at an ion beam energy of 150 keV to a fluence of 5*1016 Y+/cm2 produces an amorphous glassy layer approximately 110 nm in thickness, measured from the outer surface. unt, 1999


Sputtering

Some of the collision events result in atoms being ejected ( sputtered) from the surface, and thus ion implantation will slowly etch away a surface. The effect is only appreciable for very large doses.


Ion channelling

If there is a crystallographic structure to the target, and especially in semiconductor substrates where the crystal structure is more open, particular crystallographic directions offer much lower stopping than other directions. The result is that the range of an ion can be much longer if the ion travels exactly along a particular direction, for example the <110> direction in
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
and other
diamond cubic In crystallography, the diamond cubic crystal structure is a repeating pattern of 8 atoms that certain materials may adopt as they solidify. While the first known example was diamond, other elements in group 14 also adopt this structure, in ...
materials. This effect is called ''ion channelling'', and, like all the channelling effects, is highly nonlinear, with small variations from perfect orientation resulting in extreme differences in implantation depth. For this reason, most implantation is carried out a few degrees off-axis, where tiny alignment errors will have more predictable effects. Ion channelling can be used directly in Rutherford backscattering and related techniques as an analytical method to determine the amount and depth profile of damage in crystalline thin film materials.


Safety


Hazardous materials

In fabricating wafers, toxic materials such as arsine and
phosphine Phosphine (IUPAC name: phosphane) is a colorless, flammable, highly toxic compound with the chemical formula , classed as a pnictogen hydride. Pure phosphine is odorless, but technical grade samples have a highly unpleasant odor like rotting ...
are often used in the ion implanter process. Other common
carcinogen A carcinogen () is any agent that promotes the development of cancer. Carcinogens can include synthetic chemicals, naturally occurring substances, physical agents such as ionizing and non-ionizing radiation, and biologic agents such as viruse ...
ic,
corrosive Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
,
flammable A combustible material is a material that can burn (i.e., sustain a flame) in air under certain conditions. A material is flammable if it ignites easily at ambient temperatures. In other words, a combustible material ignites with some effort ...
, or toxic elements include
antimony Antimony is a chemical element; it has chemical symbol, symbol Sb () and atomic number 51. A lustrous grey metal or metalloid, it is found in nature mainly as the sulfide mineral stibnite (). Antimony compounds have been known since ancient t ...
,
arsenic Arsenic is a chemical element; it has Symbol (chemistry), symbol As and atomic number 33. It is a metalloid and one of the pnictogens, and therefore shares many properties with its group 15 neighbors phosphorus and antimony. Arsenic is not ...
,
phosphorus Phosphorus is a chemical element; it has Chemical symbol, symbol P and atomic number 15. All elemental forms of phosphorus are highly Reactivity (chemistry), reactive and are therefore never found in nature. They can nevertheless be prepared ar ...
, and
boron Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
. Semiconductor fabrication facilities are highly automated, but residue of hazardous elements in machines can be encountered during servicing and in
vacuum pump A vacuum pump is a type of pump device that draws gas particles from a sealed volume in order to leave behind a partial vacuum. The first vacuum pump was invented in 1650 by Otto von Guericke, and was preceded by the suction pump, which dates to ...
hardware.


High voltages and particle accelerators

High voltage power supplies used in ion accelerators necessary for ion implantation can pose a risk of
electrical injury An electrical injury (electric injury) or electrical shock (electric shock) is damage sustained to the skin or internal organs on direct contact with an electric current. The injury depends on the density of the current, tissue resistance an ...
. In addition, high-energy atomic collisions can generate
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s and, in some cases, other ionizing radiation and
radionuclide A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
s. In addition to high voltage,
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
s such as radio frequency
linear particle accelerator A linear particle accelerator (often shortened to linac) is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of Oscillation, oscillating electric potentials along ...
s and laser wakefield plasma accelerators present other hazards.


See also

* Stopping and Range of Ions in Matter * Plasma-immersion ion implantation


References


External links

{{Glass science Materials science Semiconductor device fabrication Semiconductor technology Glass coating and surface modification