In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the concept of an inverse element generalises the concepts of
opposite
In lexical semantics, opposites are words lying in an inherently incompatible binary relationship. For example, something that is ''even'' entails that it is not ''odd''. It is referred to as a 'binary' relationship because there are two members i ...
() and
reciprocal () of numbers.
Given an
operation denoted here , and an
identity element
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
denoted , if , one says that is a left inverse of , and that is a right inverse of . (An identity element is an element such that and for all and for which the left-hand sides are defined.)
When the operation is
associative
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
, if an element has both a left inverse and a right inverse, then these two inverses are equal and unique; they are called the ''inverse element'' or simply the ''inverse''. Often an adjective is added for specifying the operation, such as in
additive inverse
In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
,
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
, and
functional inverse
In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ .
For a function f\colon X\ ...
. In this case (associative operation), an invertible element is an element that has an inverse. In a
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
, an ''invertible element'', also called a
unit, is an element that is invertible under multiplication (this is not ambiguous, as every element is invertible under addition).
Inverses are commonly used in
groupswhere every element is invertible, and
ringswhere invertible elements are also called
units
Unit may refer to:
General measurement
* Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law
**International System of Units (SI), modern form of the metric system
**English units, histo ...
. They are also commonly used for operations that are not defined for all possible operands, such as
inverse matrices
In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an ...
and
inverse function
In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ .
For a function f\colon ...
s. This has been generalized to
category theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
, where, by definition, an
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
is an invertible
morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
.
The word 'inverse' is derived from that means 'turned upside down', 'overturned'. This may take its origin from the case of
fractions
A fraction (from , "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, thre ...
, where the (multiplicative) inverse is obtained by exchanging the numerator and the denominator (the inverse of
is
).
Definitions and basic properties
The concepts of ''inverse element'' and ''invertible element'' are commonly defined for
binary operations
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.
More specifically, a binary operation o ...
that are everywhere defined (that is, the operation is defined for any two elements of its
domain). However, these concepts are also commonly used with
partial operation
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.
More specifically, a binary operation o ...
s, that is operations that are not defined everywhere. Common examples are
matrix multiplication
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the n ...
,
function composition
In mathematics, the composition operator \circ takes two function (mathematics), functions, f and g, and returns a new function h(x) := (g \circ f) (x) = g(f(x)). Thus, the function is function application, applied after applying to . (g \c ...
and composition of
morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
s in a
category
Category, plural categories, may refer to:
General uses
*Classification, the general act of allocating things to classes/categories Philosophy
* Category of being
* ''Categories'' (Aristotle)
* Category (Kant)
* Categories (Peirce)
* Category ( ...
. It follows that the common definitions of
associativity
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a Validity (logic), valid rule of replaceme ...
and
identity element
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
must be extended to partial operations; this is the object of the first subsections.
In this section, is a
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
(possibly a
proper class
Proper may refer to:
Mathematics
* Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact
* Proper morphism, in algebraic geometry, an analogue of a proper map f ...
) on which a partial operation (possibly total) is defined, which is denoted with
Associativity
A partial operation is
associative
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
if
:
for every in for which one of the members of the equality is defined; the equality means that the other member of the equality must also be defined.
Examples of non-total associative operations are
multiplication of matrices of arbitrary size, and
function composition
In mathematics, the composition operator \circ takes two function (mathematics), functions, f and g, and returns a new function h(x) := (g \circ f) (x) = g(f(x)). Thus, the function is function application, applied after applying to . (g \c ...
.
Identity elements
Let
be a possibly
partial
Partial may refer to:
Mathematics
*Partial derivative, derivative with respect to one of several variables of a function, with the other variables held constant
** ∂, a symbol that can denote a partial derivative, sometimes pronounced "partial d ...
associative operation on a set .
An ''
identity element
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
'', or simply an ''identity'' is an element such that
:
for every and for which the left-hand sides of the equalities are defined.
If and are two identity elements such that
is defined, then
(This results immediately from the definition, by
)
It follows that a total operation has at most one identity element, and if and are different identities, then
is not defined.
For example, in the case of
matrix multiplication
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the n ...
, there is one
identity matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the obje ...
for every positive integer , and two identity matrices of different size cannot be multiplied together.
Similarly,
identity function
Graph of the identity function on the real numbers
In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
s are identity elements for
function composition
In mathematics, the composition operator \circ takes two function (mathematics), functions, f and g, and returns a new function h(x) := (g \circ f) (x) = g(f(x)). Thus, the function is function application, applied after applying to . (g \c ...
, and the composition of the identity functions of two different sets are not defined.
Left and right inverses
If
where is an identity element, one says that is a ''left inverse'' of , and is a ''right inverse'' of .
Left and right inverses do not always exist, even when the operation is total and associative. For example, addition is a total associative operation on
nonnegative integer
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
s, which has as
additive identity
In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element in the set, yields . One of the most familiar additive identities is the number 0 from elementary ma ...
, and is the only element that has an
additive inverse
In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
. This lack of inverses is the main motivation for extending the
natural number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s into the integers.
An element can have several left inverses and several right inverses, even when the operation is total and associative. For example, consider the
functions from the integers to the integers. The ''doubling function''
has infinitely many left inverses under
function composition
In mathematics, the composition operator \circ takes two function (mathematics), functions, f and g, and returns a new function h(x) := (g \circ f) (x) = g(f(x)). Thus, the function is function application, applied after applying to . (g \c ...
, which are the functions that divide by two the even numbers, and give any value to odd numbers. Similarly, every function that maps to either
or
is a right inverse of the function
the
floor function
In mathematics, the floor function is the function that takes as input a real number , and gives as output the greatest integer less than or equal to , denoted or . Similarly, the ceiling function maps to the least integer greater than or eq ...
that maps to
or
depending whether is even or odd.
More generally, a function has a left inverse for
function composition
In mathematics, the composition operator \circ takes two function (mathematics), functions, f and g, and returns a new function h(x) := (g \circ f) (x) = g(f(x)). Thus, the function is function application, applied after applying to . (g \c ...
if and only if it is
injective
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
, and it has a right inverse if and only if it is
surjective
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
.
In
category theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
, right inverses are also called
sections
Section, Sectioning, or Sectioned may refer to:
Arts, entertainment and media
* Section (music), a complete, but not independent, musical idea
* Section (typography), a subdivision, especially of a chapter, in books and documents
** Section sig ...
, and left inverses are called
retractions.
Inverses
An element is ''invertible'' under an operation if it has a left inverse and a right inverse.
In the common case where the operation is associative, the left and right inverse of an element are equal and unique. Indeed, if and are respectively a left inverse and a right inverse of , then
:
''The inverse'' of an invertible element is its unique left or right inverse.
If the operation is denoted as an addition, the inverse, or
additive inverse
In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
, of an element is denoted
Otherwise, the inverse of is generally denoted
or, in the case of a
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
multiplication
When there may be a confusion between several operations, the symbol of the operation may be added before the exponent, such as in
The notation
is not commonly used for
function composition
In mathematics, the composition operator \circ takes two function (mathematics), functions, f and g, and returns a new function h(x) := (g \circ f) (x) = g(f(x)). Thus, the function is function application, applied after applying to . (g \c ...
, since
can be used for the
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
.
If and are invertible, and
is defined, then
is invertible, and its inverse is
An invertible
homomorphism
In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
is called an
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
. In
category theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
, an invertible
morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
is also called an
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
.
In groups
A
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
is a
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
with an
associative operation
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
that has an identity element, and for which every element has an inverse.
Thus, the inverse is a
function from the group to itself that may also be considered as an operation of
arity
In logic, mathematics, and computer science, arity () is the number of arguments or operands taken by a function, operation or relation. In mathematics, arity may also be called rank, but this word can have many other meanings. In logic and ...
one. It is also an
involution
Involution may refer to: Mathematics
* Involution (mathematics), a function that is its own inverse
* Involution algebra, a *-algebra: a type of algebraic structure
* Involute, a construction in the differential geometry of curves
* Exponentiati ...
, since the inverse of the inverse of an element is the element itself.
A group may
act on a set as
transformations of this set. In this case, the inverse
of a group element
defines a transformation that is the inverse of the transformation defined by
that is, the transformation that "undoes" the transformation defined by
For example, the
Rubik's cube group
The Rubik's Cube group (G, \cdot ) represents the mathematical structure of the Rubik's Cube mechanical puzzle. Each element of the set G corresponds to a cube move, which is the effect of any sequence of rotations of the cube's faces. With this ...
represents the finite sequences of elementary moves. The inverse of such a sequence is obtained by applying the inverse of each move in the reverse order.
In monoids
A
monoid
In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being .
Monoids are semigroups with identity ...
is a set with an
associative operation
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
that has an
identity element
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
.
The ''invertible elements'' in a monoid form a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
under monoid operation.
A
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
is a monoid for ring multiplication. In this case, the invertible elements are also called
units
Unit may refer to:
General measurement
* Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law
**International System of Units (SI), modern form of the metric system
**English units, histo ...
and form the
group of units
In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that
vu = uv = 1,
where is the multiplicative identity; the ele ...
of the ring.
If a monoid is not
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
, there may exist non-invertible elements that have a left inverse or a right inverse (not both, as, otherwise, the element would be invertible).
For example, the set of the
functions from a set to itself is a monoid under
function composition
In mathematics, the composition operator \circ takes two function (mathematics), functions, f and g, and returns a new function h(x) := (g \circ f) (x) = g(f(x)). Thus, the function is function application, applied after applying to . (g \c ...
. In this monoid, the invertible elements are the
bijective function
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivale ...
s; the elements that have left inverses are the
injective function
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
s, and those that have right inverses are the
surjective function
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a ...
s.
Given a monoid, one may want extend it by adding inverse to some elements. This is generally impossible for non-commutative monoids, but, in a commutative monoid, it is possible to add inverses to the elements that have the
cancellation property
In mathematics, the notion of cancellativity (or ''cancellability'') is a generalization of the notion of invertibility.
An element ''a'' in a magma has the left cancellation property (or is left-cancellative) if for all ''b'' and ''c'' in ''M ...
(an element has the cancellation property if
implies
and
implies This extension of a monoid is allowed by
Grothendieck group
In mathematics, the Grothendieck group, or group of differences, of a commutative monoid is a certain abelian group. This abelian group is constructed from in the most universal way, in the sense that any abelian group containing a group homomorp ...
construction. This is the method that is commonly used for constructing
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s from
natural number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s,
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example,
The set of all ...
s from
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s and, more generally, the
field of fractions
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fie ...
of an
integral domain
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
, and
localizations of
commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
s.
In rings
A
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
is an
algebraic structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
with two operations, ''addition'' and ''multiplication'', which are denoted as the usual operations on numbers.
Under addition, a ring is an
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
, which means that addition is
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
and
associative
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
; it has an identity, called the
additive identity
In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element in the set, yields . One of the most familiar additive identities is the number 0 from elementary ma ...
, and denoted ; and every element has an inverse, called its
additive inverse
In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
and denoted . Because of commutativity, the concepts of left and right inverses are meaningless since they do not differ from inverses.
Under multiplication, a ring is a
monoid
In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being .
Monoids are semigroups with identity ...
; this means that multiplication is associative and has an identity called the
multiplicative identity
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
and denoted . An ''invertible element '' for multiplication is called a
unit. The inverse or
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
(for avoiding confusion with additive inverses) of a unit is denoted
or, when the multiplication is commutative,
The additive identity is never a unit, except when the ring is the
zero ring
In ring theory, a branch of mathematics, the zero ring or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which fo ...
, which has as its unique element.
If is the only non-unit, the ring is a
field if the multiplication is commutative, or a
division ring
In algebra, a division ring, also called a skew field (or, occasionally, a sfield), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicativ ...
otherwise.
In a
noncommutative ring
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not ...
(that is, a ring whose multiplication is not commutative), a non-invertible element may have one or several left or right inverses. This is, for example, the case of the
linear function
In mathematics, the term linear function refers to two distinct but related notions:
* In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For di ...
s from an
infinite-dimensional vector space
In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to d ...
to itself.
A
commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
(that is, a ring whose multiplication is commutative) may be extended by adding inverses to elements that are not
zero divisors
In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zero ...
(that is, their product with a nonzero element cannot be ). This is the process of
localization, which produces, in particular, the field of
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example,
The set of all ...
s from the ring of integers, and, more generally, the
field of fractions
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fie ...
of an
integral domain
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
. Localization is also used with zero divisors, but, in this case the original ring is not a
subring
In mathematics, a subring of a ring is a subset of that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and that shares the same multiplicative identity as .In general, not all s ...
of the localisation; instead, it is mapped non-injectively to the localization.
Matrices
Matrix multiplication
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the n ...
is commonly defined for
matrices
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the ...
over a
field, and straightforwardly extended to matrices over
rings,
rngs and
semiring
In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distribu ...
s. However, ''in this section, only matrices over a
commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
are considered'', because of the use of the concept of
rank
A rank is a position in a hierarchy. It can be formally recognized—for example, cardinal, chief executive officer, general, professor—or unofficial.
People Formal ranks
* Academic rank
* Corporate title
* Diplomatic rank
* Hierarchy ...
and
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
.
If is a matrix (that is, a matrix with rows and columns), and is a matrix, the product is defined if , and only in this case. An
identity matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the obje ...
, that is, an identity element for matrix multiplication is a
square matrix
In mathematics, a square matrix is a Matrix (mathematics), matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Squ ...
(same number for rows and columns) whose entries of the
main diagonal
In linear algebra, the main diagonal (sometimes principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix A is the list of entries a_ where i = j. All off-diagonal elements are zero in a diagonal matrix ...
are all equal to , and all other entries are .
An
invertible matrix
In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by a ...
is an invertible element under matrix multiplication. A matrix over a commutative ring is invertible if and only if its determinant is a
unit in (that is, is invertible in . In this case, its
inverse matrix can be computed with
Cramer's rule
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of ...
.
If is a field, the determinant is invertible if and only if it is not zero. As the case of fields is more common, one see often invertible matrices defined as matrices with a nonzero determinant, but this is incorrect over rings.
In the case of
integer matrices (that is, matrices with integer entries), an invertible matrix is a matrix that has an inverse that is also an integer matrix. Such a matrix is called a
unimodular matrix for distinguishing it from matrices that are invertible over the
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s. A square integer matrix is unimodular if and only if its determinant is or , since these two numbers are the only units in the ring of integers.
A matrix has a left inverse if and only if its rank equals its number of columns. This left inverse is not unique except for square matrices where the left inverse equal the inverse matrix. Similarly, a right inverse exists if and only if the rank equals the number of rows; it is not unique in the case of a rectangular matrix, and equals the inverse matrix in the case of a square matrix.
Functions, homomorphisms and morphisms
Composition
Composition or Compositions may refer to:
Arts and literature
*Composition (dance), practice and teaching of choreography
* Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include ...
is a
partial operation
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.
More specifically, a binary operation o ...
that generalizes to
homomorphism
In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
s of
algebraic structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
s and
morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
s of
categories into operations that are also called ''composition'', and share many properties with function composition.
In all the case, composition is
associative
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
.
If
and
the composition
is defined if and only if
or, in the function and homomorphism cases,
In the function and homomorphism cases, this means that the
codomain
In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
of
equals or is included in the
domain of . In the morphism case, this means that the
codomain
In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to ...
of
equals the
domain of .
There is an ''identity''
for every object (
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
, algebraic structure or
object
Object may refer to:
General meanings
* Object (philosophy), a thing, being, or concept
** Object (abstract), an object which does not exist at any particular time or place
** Physical object, an identifiable collection of matter
* Goal, an a ...
), which is called also an
identity function
Graph of the identity function on the real numbers
In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
in the function case.
A function is invertible if and only if it is a
bijection
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
. An invertible homomorphism or morphism is called an
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
. An homomorphism of algebraic structures is an isomorphism if and only if it is a bijection. The inverse of a bijection is called an
inverse function
In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ .
For a function f\colon ...
. In the other cases, one talks of ''inverse isomorphisms''.
A function has a left inverse or a right inverse if and only it is
injective
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
or
surjective
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
, respectively. An homomorphism of algebraic structures that has a left inverse or a right inverse is respectively injective or surjective, but the converse is not true in some algebraic structures. For example, the converse is true for
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s but not for
modules over a ring: a homomorphism of modules that has a left inverse of a right inverse is called respectively a
split epimorphism or a
split monomorphism. This terminology is also used for morphisms in any category.
Generalizations
In a unital magma
Let
be a unital
magma
Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma (sometimes colloquially but incorrectly referred to as ''lava'') is found beneath the surface of the Earth, and evidence of magmatism has also ...
, that is, a
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
with a
binary operation
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.
More specifically, a binary operation ...
and an
identity element
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
. If, for
, we have
, then
is called a left inverse of
and
is called a right inverse of
. If an element
is both a left inverse and a right inverse of
, then
is called a two-sided inverse, or simply an inverse, of
. An element with a two-sided inverse in
is called invertible in
. An element with an inverse element only on one side is left invertible or right invertible.
Elements of a unital magma
may have multiple left, right or two-sided inverses. For example, in the magma given by the Cayley table
the elements 2 and 3 each have two two-sided inverses.
A unital magma in which all elements are invertible need not be a
loop. For example, in the magma
given by the
Cayley table
Named after the 19th-century United Kingdom, British mathematician Arthur Cayley, a Cayley table describes the structure of a finite group by arranging all the possible products of all the group's elements in a square table reminiscent of an additi ...
every element has a unique two-sided inverse (namely itself), but
is not a loop because the Cayley table is not a
Latin square
Latin ( or ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally spoken by the Latins in Latium (now known as Lazio), the lower Tiber area around Rome, Italy. Through the expansion o ...
.
Similarly, a loop need not have two-sided inverses. For example, in the loop given by the Cayley table
the only element with a two-sided inverse is the identity element 1.
If the operation
is
associative
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
then if an element has both a left inverse and a right inverse, they are equal. In other words, in a
monoid
In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being .
Monoids are semigroups with identity ...
(an associative unital magma) every element has at most one inverse (as defined in this section). In a monoid, the set of invertible elements is a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
, called the
group of units
In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that
vu = uv = 1,
where is the multiplicative identity; the ele ...
of
, and denoted by
or ''H''
1.
In a semigroup
The definition in the previous section generalizes the notion of inverse in group relative to the notion of identity. It's also possible, albeit less obvious, to generalize the notion of an inverse by dropping the identity element but keeping associativity; that is, in a
semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.
The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily th ...
.
In a semigroup ''S'' an element ''x'' is called (von Neumann) regular if there exists some element ''z'' in ''S'' such that ''xzx'' = ''x''; ''z'' is sometimes called a ''
pseudoinverse
In mathematics, and in particular, algebra, a generalized inverse (or, g-inverse) of an element ''x'' is an element ''y'' that has some properties of an inverse element but not necessarily all of them. The purpose of constructing a generalized inv ...
''. An element ''y'' is called (simply) an inverse of ''x'' if ''xyx'' = ''x'' and ''y'' = ''yxy''. Every regular element has at least one inverse: if ''x'' = ''xzx'' then it is easy to verify that ''y'' = ''zxz'' is an inverse of ''x'' as defined in this section. Another easy to prove fact: if ''y'' is an inverse of ''x'' then ''e'' = ''xy'' and ''f'' = ''yx'' are
idempotent
Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
s, that is ''ee'' = ''e'' and ''ff'' = ''f''. Thus, every pair of (mutually) inverse elements gives rise to two idempotents, and ''ex'' = ''xf'' = ''x'', ''ye'' = ''fy'' = ''y'', and ''e'' acts as a left identity on ''x'', while ''f'' acts a right identity, and the left/right roles are reversed for ''y''. This simple observation can be generalized using
Green's relations In mathematics, Green's relations are five equivalence relations that characterise the elements of a semigroup in terms of the principal ideals they generate. The relations are named for James Alexander Green, who introduced them in a paper of 1951. ...
: every idempotent ''e'' in an arbitrary semigroup is a left identity for ''R
e'' and right identity for ''L
e''. An intuitive description of this fact is that every pair of mutually inverse elements produces a local left identity, and respectively, a local right identity.
In a monoid, the notion of inverse as defined in the previous section is strictly narrower than the definition given in this section. Only elements in the Green class
''H''1 have an inverse from the unital magma perspective, whereas for any idempotent ''e'', the elements of ''H''
e have an inverse as defined in this section. Under this more general definition, inverses need not be unique (or exist) in an arbitrary semigroup or monoid. If all elements are regular, then the semigroup (or monoid) is called regular, and every element has at least one inverse. If every element has exactly one inverse as defined in this section, then the semigroup is called an
inverse semigroup In group (mathematics), group theory, an inverse semigroup (occasionally called an inversion semigroup) ''S'' is a semigroup in which every element ''x'' in ''S'' has a unique ''inverse'' ''y'' in ''S'' in the sense that and , i.e. a regular semigr ...
. Finally, an inverse semigroup with only one idempotent is a group. An inverse semigroup may have an
absorbing element
In mathematics, an absorbing element (or annihilating element) is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element ...
0 because 000 = 0, whereas a group may not.
Outside semigroup theory, a unique inverse as defined in this section is sometimes called a quasi-inverse. This is generally justified because in most applications (for example, all examples in this article) associativity holds, which makes this notion a generalization of the left/right inverse relative to an identity (see
Generalized inverse
In mathematics, and in particular, algebra, a generalized inverse (or, g-inverse) of an element ''x'' is an element ''y'' that has some properties of an inverse element but not necessarily all of them. The purpose of constructing a generalized inv ...
).
''U''-semigroups
A natural generalization of the inverse semigroup is to define an (arbitrary) unary operation ° such that (''a''°)° = ''a'' for all ''a'' in ''S''; this endows ''S'' with a type 2,1 algebra. A semigroup endowed with such an operation is called a ''U''-semigroup. Although it may seem that ''a''° will be the inverse of ''a'', this is not necessarily the case. In order to obtain interesting notion(s), the unary operation must somehow interact with the semigroup operation. Two classes of ''U''-semigroups have been studied:
* ''I''-semigroups, in which the interaction axiom is ''aa''°''a'' = ''a''
*
*-semigroups, in which the interaction axiom is (''ab'')° = ''b''°''a''°. Such an operation is called an
involution
Involution may refer to: Mathematics
* Involution (mathematics), a function that is its own inverse
* Involution algebra, a *-algebra: a type of algebraic structure
* Involute, a construction in the differential geometry of curves
* Exponentiati ...
, and typically denoted by ''a''*
Clearly a group is both an ''I''-semigroup and a *-semigroup. A class of semigroups important in semigroup theory are
completely regular semigroups; these are ''I''-semigroups in which one additionally has ''aa''° = ''a''°''a''; in other words every element has commuting pseudoinverse ''a''°. There are few concrete examples of such semigroups however; most are
completely simple semigroups. In contrast, a subclass of *-semigroups, the
*-regular semigroups (in the sense of Drazin), yield one of best known examples of a (unique) pseudoinverse, the
Moore–Penrose inverse
In mathematics, and in particular linear algebra, the Moore–Penrose inverse of a matrix , often called the pseudoinverse, is the most widely known generalization of the inverse matrix. It was independently described by E. H. Moore in 1920, Ar ...
. In this case however the involution ''a''* is not the pseudoinverse. Rather, the pseudoinverse of ''x'' is the unique element ''y'' such that ''xyx'' = ''x'', ''yxy'' = ''y'', (''xy'')* = ''xy'', (''yx'')* = ''yx''. Since *-regular semigroups generalize inverse semigroups, the unique element defined this way in a *-regular semigroup is called the ''generalized inverse'' or ''Moore–Penrose inverse''.
Semirings
Examples
All examples in this section involve associative operators.
Galois connections
The lower and upper adjoints in a (monotone)
Galois connection
In mathematics, especially in order theory, a Galois connection is a particular correspondence (typically) between two partially ordered sets (posets). Galois connections find applications in various mathematical theories. They generalize the fun ...
, ''L'' and ''G'' are quasi-inverses of each other; that is, ''LGL'' = ''L'' and ''GLG'' = ''G'' and one uniquely determines the other. They are not left or right inverses of each other however.
Generalized inverses of matrices
A
square matrix
In mathematics, a square matrix is a Matrix (mathematics), matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Squ ...
with entries in a
field is invertible (in the set of all square matrices of the same size, under
matrix multiplication
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the n ...
) if and only if its
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
is different from zero. If the determinant of
is zero, it is impossible for it to have a one-sided inverse; therefore a left inverse or right inverse implies the existence of the other one. See
invertible matrix
In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by a ...
for more.
More generally, a square matrix over a
commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
is invertible
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
its determinant is invertible in
.
Non-square matrices of
full rank have several one-sided inverses:
* For
we have left inverses; for example,
* For