HOME

TheInfoList



OR:

Electromagnetism is one of the
fundamental forces In physics, the fundamental interactions or fundamental forces are interactions in nature that appear not to be reducible to more basic interactions. There are four fundamental interactions known to exist: * gravity * electromagnetism * weak int ...
of nature. Early on,
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
and
magnetism Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, ...
were studied separately and regarded as separate phenomena.
Hans Christian Ørsted Hans Christian Ørsted (; 14 August 1777 – 9 March 1851), sometimes Transliteration, transliterated as Oersted ( ), was a Danish chemist and physicist who discovered that electric currents create magnetic fields. This phenomenon is known as ...
discovered that the two were related –
electric current An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge c ...
s give rise to magnetism.
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English chemist and physicist who contributed to the study of electrochemistry and electromagnetism. His main discoveries include the principles underlying electromagnetic inducti ...
discovered the converse, that magnetism could
induce Induce may refer to: * Induced consumption * Induced innovation * Induced character * Induced coma * Induced menopause * Induced metric * Induced path * Induced topology * Induce (musician), American musician * Labor induction Labor indu ...
electric currents, and
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
put the whole thing together in a unified theory of
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
.
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, Electrical network, electr ...
further indicated that
electromagnetic wave In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength, ...
s existed, and the experiments of
Heinrich Hertz Heinrich Rudolf Hertz (; ; 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's equations of electromagnetism. Biography Heinri ...
confirmed this, making
radio Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3  hertz (Hz) and 300  gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
possible. Maxwell also postulated, correctly, that
light Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
was a form of electromagnetic wave, thus making all of
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of optical instruments, instruments that use or Photodetector, detect it. Optics usually describes t ...
a branch of electromagnetism.
Radio wave Radio waves (formerly called Hertzian waves) are a type of electromagnetic radiation with the lowest frequencies and the longest wavelengths in the electromagnetic spectrum, typically with frequencies below 300 gigahertz (GHz) and wavelengths g ...
s differ from light only in that the
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
of the former is much longer than the latter.
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
showed that the
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
arises through the relativistic motion of the
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
and thus magnetism is merely a side effect of electricity. The modern theoretical treatment of electromagnetism is as a
quantum field In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatom ...
in
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
. In many situations of interest to
electrical engineering Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems that use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the l ...
, it is not necessary to apply quantum theory to get correct results.
Classical physics Classical physics refers to physics theories that are non-quantum or both non-quantum and non-relativistic, depending on the context. In historical discussions, ''classical physics'' refers to pre-1900 physics, while '' modern physics'' refers to ...
is still an accurate approximation in most situations involving
macroscopic The macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic. Overview When applied to physical phenome ...
objects. With few exceptions, quantum theory is only necessary at the
atomic scale Atomic spacing refers to the distance between the nuclei of atoms in a material. This space is extremely large compared to the size of the atomic nucleus, and is related to the chemical bonds which bind atoms together. In solid materials, the ato ...
and a simpler classical treatment can be applied. Further simplifications of treatment are possible in limited situations.
Electrostatics Electrostatics is a branch of physics that studies slow-moving or stationary electric charges. Since classical antiquity, classical times, it has been known that some materials, such as amber, attract lightweight particles after triboelectric e ...
deals only with stationary
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
s so magnetic fields do not arise and are not considered.
Permanent magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, c ...
s can be described without reference to electricity or electromagnetism.
Circuit theory Circuit may refer to: Science and technology Electrical engineering * Electrical circuit, a complete electrical network with a closed-loop giving a return path for current ** Analog circuit, uses continuous signal levels ** Balanced circu ...
deals with
electrical network An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sou ...
s where the fields are largely confined around current carrying conductors. In such circuits, even Maxwell's equations can be dispensed with and simpler formulations used. On the other hand, a quantum treatment of electromagnetism is important in
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
.
Chemical reaction A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
s and
chemical bond A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons a ...
ing are the result of
quantum mechanical Quantum mechanics is the fundamental physical theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is the foundation of a ...
interactions of
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s around
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s. Quantum considerations are also necessary to explain the behaviour of many electronic devices, for instance the
tunnel diode A tunnel diode or Esaki diode is a type of semiconductor diode that has effectively " negative resistance" due to the quantum mechanical effect called tunneling. It was invented in August 1957 by Leo Esaki and Yuriko Kurose when working ...
.


Electric charge

Electromagnetism is one of the fundamental forces of nature alongside
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
, the
strong force In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interactions. It confines quarks into protons, neutrons, and other hadron particles, an ...
and the weak force. Whereas gravity acts on all things that have
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
, electromagnetism acts on all things that have
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
. Furthermore, as there is the
conservation of mass In physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter the mass of the system must remain constant over time. The law implies that mass can neith ...
according to which mass cannot be created or destroyed, there is also the conservation of charge which means that the charge in a closed system (where no charges are leaving or entering) must remain constant. The fundamental law that describes the gravitational force on a massive object in
classical physics Classical physics refers to physics theories that are non-quantum or both non-quantum and non-relativistic, depending on the context. In historical discussions, ''classical physics'' refers to pre-1900 physics, while '' modern physics'' refers to ...
is
Newton's law of gravity Newton's law of universal gravitation describes gravity as a force by stating that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the sq ...
. Analogously,
Coulomb's law Coulomb's inverse-square law, or simply Coulomb's law, is an experimental scientific law, law of physics that calculates the amount of force (physics), force between two electric charge, electrically charged particles at rest. This electric for ...
is the fundamental law that describes the force that charged objects exert on one another. It is given by the formula : F=k_\text where ''F'' is the force, ''k''e is the
Coulomb constant Coulomb's inverse-square law, or simply Coulomb's law, is an experimental scientific law, law of physics that calculates the amount of force (physics), force between two electric charge, electrically charged particles at rest. This electric for ...
, ''q''1 and ''q''2 are the magnitudes of the two charges, and ''r''2 is the square of the distance between them. It describes the fact that like charges repel one another whereas opposite charges attract one another and that the stronger the charges of the particles, the stronger the force they exert on one another. The law is also an
inverse square law In science, an inverse-square law is any scientific law stating that the observed "intensity" of a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cau ...
which means that as the distance between two particles is doubled, the force on them is reduced by a factor of four.


Electric and magnetic fields

In physics,
fields Fields may refer to: Music *Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song by ...
are entities that interact with matter and can be described mathematically by assigning a value to each point in space and time.
Vector field In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
s are fields which are assigned both a numerical value and a direction at each point in space and time. Electric charges produce a vector field called the
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
. The numerical value of the electric field, also called the electric field strength, determines the strength of the electric force that a charged particle will feel in the field and the direction of the field determines which direction the force will be in. By convention, the direction of the electric field is the same as the direction of the force on positive charges and opposite to the direction of the force on negative charges. Because positive charges are repelled by other positive charges and are attracted to negative charges, this means the electric fields point away from positive charges and towards negative charges. These properties of the electric field are encapsulated in the equation for the electric force on a charge written in terms of the electric field: F = qE where ''F'' is the force on a charge ''q'' in an electric field ''E''. As well as producing an electric field, charged particles will produce a
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
when they are in a state of motion that will be felt by other charges that are in motion (as well as
permanent magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, c ...
s). The direction of the force on a moving charge from a magnetic field is perpendicular to both the direction of motion and the direction of the magnetic field lines and can be found using the
right-hand rule In mathematics and physics, the right-hand rule is a Convention (norm), convention and a mnemonic, utilized to define the orientation (vector space), orientation of Cartesian coordinate system, axes in three-dimensional space and to determine the ...
. The strength of the force is given by the equation F = qvB \sin\theta where ''F'' is the force on a charge ''q'' with speed ''v'' in a magnetic field ''B'' which is pointing in a direction of angle ''θ'' from the direction of motion of the charge. The combination of the electric and magnetic forces on a charged particle is called the
Lorentz force In electromagnetism, the Lorentz force is the force exerted on a charged particle by electric and magnetic fields. It determines how charged particles move in electromagnetic environments and underlies many physical phenomena, from the operation ...
.
Classical electromagnetism Classical electromagnetism or classical electrodynamics is a branch of physics focused on the study of interactions between electric charges and electrical current, currents using an extension of the classical Newtonian model. It is, therefore, a ...
is fully described by the Lorentz force alongside a set of equations called
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, Electrical network, electr ...
. The first of these equations is known as Gauss's law. It describes the electric field produced by charged particles and by
charge distribution In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in co ...
s. According to Gauss's law, the
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications in physics. For transport phe ...
(or flow) of electric field through any
closed surface In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces ari ...
is proportional to the amount of charge that is enclosed by that surface. This means that the greater the charge, the greater the electric field that is produced. It also has other important implications. For example, this law means that if there is no charge enclosed by the surface, then either there is no electric field at all or, if there is a charge near to but outside of the closed surface, the flow of electric field into the surface must exactly cancel with the flow out of the surface. The second of Maxwell's equations is known as
Gauss's law for magnetism In physics, Gauss's law for magnetism is one of the four Maxwell's equations that underlie classical electrodynamics. It states that the magnetic field has divergence equal to zero, in other words, that it is a solenoidal vector field. It is ...
and, similarly to the first Gauss's law, it describes flux, but instead of
electric flux In electromagnetism, electric flux is the total electric field that crosses a given surface. The electric flux through a closed surface is directly proportional to the total charge contained within that surface. The electric field E can exert ...
, it describes
magnetic flux In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted or . The SI unit of magnetic flux is the we ...
. According to Gauss's law for magnetism, the flow of magnetic field through a closed surface is always zero. This means that if there is a magnetic field, the flow into the closed surface will always cancel out with the flow out of the closed surface. This law has also been called "no magnetic monopoles" because it means that any magnetic flux flowing out of a closed surface must flow back into it, meaning that positive and negative magnetic poles must come together as a
magnetic dipole In electromagnetism, a magnetic dipole is the limit of either a closed loop of electric current or a pair of poles as the size of the source is reduced to zero while keeping the magnetic moment constant. It is a magnetic analogue of the Electri ...
and can never be separated into
magnetic monopole In particle physics, a magnetic monopole is a hypothetical particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magnetic charge". ...
s. This is in contrast to electric charges which can exist as separate positive and negative charges. The third of Maxwell's equations is called the Ampère–Maxwell law. It states that a magnetic field can be generated by an
electric current An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge c ...
. The direction of the magnetic field is given by Ampère's
right-hand grip rule In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish th ...
. If the wire is straight, then the magnetic field is curled around it like the gripped fingers in the right-hand rule. If the wire is wrapped into coils, then the magnetic field inside the coils points in a straight line like the outstretched thumb in the right-hand grip rule. When electric currents are used to produce a
magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, ...
in this way, it is called an
electromagnet An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire (likely copper) wound into a electromagnetic coil, coil. A current through the wire creates a magnetic ...
. Electromagnets often use a wire curled up into
solenoid upright=1.20, An illustration of a solenoid upright=1.20, Magnetic field created by a seven-loop solenoid (cross-sectional view) described using field lines A solenoid () is a type of electromagnet formed by a helix, helical coil of wire whos ...
around an iron core which strengthens the magnetic field produced because the iron core becomes magnetised. Maxwell's extension to the law states that a time-varying electric field can also generate a magnetic field. Similarly, Faraday's law of induction states that a magnetic field can produce an electric current. For example, a magnet pushed in and out of a coil of wires can produce an electric current in the coils which is proportional to the strength of the magnet as well as the number of coils and the speed at which the magnet is inserted and extracted from the coils. This principle is essential for
transformer In electrical engineering, a transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple Electrical network, circuits. A varying current in any coil of the transformer produces ...
s which are used to transform currents from high
voltage Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a Electrostatics, static electric field, it corresponds to the Work (electrical), ...
to low voltage, and vice versa. They are needed to convert high voltage
mains electricity Mains electricity, utility power, grid power, domestic power, wall power, household current, or, in some parts of Canada, hydro, is a general-purpose Alternating current, alternating-current (AC) electric power supply. It is the form of electri ...
into low voltage electricity which can be safely used in homes. Maxwell's formulation of the law is given in the Maxwell–Faraday equation—the fourth and final of Maxwell's equations—which states that a time-varying magnetic field produces an electric field. Together, Maxwell's equations provide a single uniform theory of the electric and magnetic fields and Maxwell's work in creating this theory has been called "the second great unification in physics" after the first great unification of
Newton's law of universal gravitation Newton's law of universal gravitation describes gravity as a force by stating that every particle attracts every other particle in the universe with a force that is Proportionality (mathematics)#Direct proportionality, proportional to the product ...
. The solution to Maxwell's equations in
free space A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
(where there are no charges or currents) produces
wave equation The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light ...
s corresponding to
electromagnetic waves In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength, ran ...
(with both electric and magnetic components) travelling at the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
. The observation that these wave solutions had a wave speed exactly equal to the speed of light led Maxwell to hypothesise that light is a form of electromagnetic radiation and to posit that other electromagnetic radiation could exist with different wavelengths. The existence of electromagnetic radiation was proved by
Heinrich Hertz Heinrich Rudolf Hertz (; ; 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's equations of electromagnetism. Biography Heinri ...
in a series of experiments ranging from 1886 to 1889 in which he discovered the existence of
radio wave Radio waves (formerly called Hertzian waves) are a type of electromagnetic radiation with the lowest frequencies and the longest wavelengths in the electromagnetic spectrum, typically with frequencies below 300 gigahertz (GHz) and wavelengths g ...
s. The full
electromagnetic spectrum The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high ...
(in order of increasing frequency) consists of radio waves,
microwave Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
s,
infrared radiation Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
,
visible light Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
,
ultraviolet light Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of th ...
,
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s and
gamma ray A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
s. A further unification of electromagnetism came with Einstein's
special theory of relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper, "On the Electrodynamics of Moving Bodies", the theory is presen ...
. According to special relativity, observers moving at different speeds relative to one another occupy different observational frames of reference. If one observer is in motion relative to another observer then they experience
length contraction Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame. It is also known as Lorentz contraction or Lorentz–FitzGerald ...
where unmoving objects appear closer together to the observer in motion than to the observer at rest. Therefore, if an electron is moving at the same speed as the current in a neutral wire, then they experience the flowing electrons in the wire as standing still relative to it and the positive charges as contracted together. In the
lab frame In theoretical physics, a local reference frame (local frame) refers to a coordinate system or frame of reference that is only expected to function over a small region or a restricted region of space or spacetime. The term is most often used in ...
, the electron is moving and so feels a magnetic force from the current in the wire but because the wire is neutral it feels no electric force. But in the electron's
rest frame In special relativity, the rest frame of a particle is the frame of reference (a coordinate system attached to physical markers) in which the particle is at rest. The rest frame of compound objects (such as a fluid, or a solid made of many vibrati ...
, the positive charges seem closer together compared to the flowing electrons and so the wire seems positively charged. Therefore, in the electron's rest frame it feels no magnetic force (because it is not moving in its own frame) but it does feel an electric force due to the positively charged wire. This result from relativity proves that magnetic fields are just electric fields in a different reference frame (and vice versa) and so the two are different manifestations of the same underlying
electromagnetic field An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
.


Conductors, insulators and circuits


Conductors

A conductor is a material that allows electrons to flow easily. The most effective conductors are usually
metals A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. These properties are all associated with having electrons available at the Fermi level, as against no ...
because they can be described fairly accurately by the
free electron model In solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, principally by Arnold Sommerfeld, who combined the classical Drude model with quan ...
in which electrons delocalize from the
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the University of Manchester based on the 1909 Geiger–Marsden gold foil experiment. Aft ...
, leaving positive
ions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
surrounded by a cloud of free electrons. Examples of good conductors include
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
,
aluminum Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
, and
silver Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
. Wires in electronics are often made of copper. The main properties of conductors are: # ''The electric field is zero inside a perfect conductor.'' Because charges are free to move in a conductor, when they are disturbed by an external electric field they rearrange themselves such that the field that their configuration produces exactly cancels the external electric field inside the conductor. # ''The electric potential is the same everywhere inside the conductor and is constant across the surface of the conductor.'' This follows from the first statement because the field is zero everywhere inside the conductor and therefore the potential is constant within the conductor too. # ''The electric field is perpendicular to the surface of a conductor.'' If this were not the case, the field would have a nonzero component on the surface of the conductor, which would cause the charges in the conductor to move around until that component of the field is zero. # ''The net
electric flux In electromagnetism, electric flux is the total electric field that crosses a given surface. The electric flux through a closed surface is directly proportional to the total charge contained within that surface. The electric field E can exert ...
through a surface is proportional to the charge enclosed by the surface.'' This is a restatement of Gauss' law. In some materials, the electrons are bound to the atomic nuclei and so are not free to move around but the energy required to set them free is low. In these materials, called
semiconductors A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping levels ...
, the conductivity is low at low temperatures but as the temperature is increased the electrons gain more
thermal energy The term "thermal energy" is often used ambiguously in physics and engineering. It can denote several different physical concepts, including: * Internal energy: The energy contained within a body of matter or radiation, excluding the potential en ...
and the conductivity increases. Silicon is an example of a semiconductors that can be used to create
solar cells A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
which become more conductive the more energy they receive from
photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that ...
from the sun.
Superconductors Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases ...
are materials that exhibit little to no resistance to the flow of electrons when cooled below a certain critical temperature. Superconductivity can only be explained by the quantum mechanical
Pauli exclusion principle In quantum mechanics, the Pauli exclusion principle (German: Pauli-Ausschlussprinzip) states that two or more identical particles with half-integer spins (i.e. fermions) cannot simultaneously occupy the same quantum state within a system that o ...
which states that no two
fermions In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin ( spin , spin , etc.) and obey the Pauli exclusion principle. These particles include all quarks and leptons and ...
(an electron is a type of fermion) can occupy exactly the same
quantum state In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system ...
. In superconductors, below a certain temperature the electrons form
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
bound pairs which do not follow this principle and this means that all the electrons can fall to the same
energy level A quantum mechanics, quantum mechanical system or particle that is bound state, bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical mechanics, classical pa ...
and move together uniformly in a current.


Insulators

Insulator (electricity), Insulators are material which are highly Electrical resistivity and conductivity, resistive to the flow of electrons and so are often used to cover conducting wires for safety. In insulators, electrons are tightly bound to atomic nuclei and the energy to free them is very high so they are not free to move and are resistive to induced movement by an external electric field. However, some insulators, called Dielectric, dielectrics, can be Polarizability, polarised under the influence of an external electric field so that the charges are minutely displaced forming Dipole, dipoles that create a positive and negative side. Dielectrics are used in Capacitor, capacitors to allow them to store more electric potential energy in the electric field between the capacitor plates.


Capacitors

A capacitor is an electronic component that stores electrical potential energy in an electric field between two oppositely charged conducting plates. If one of the conducting plates has a charge density of +''Q/A'' and the other has a charge of -''Q/A'' where ''A'' is the area of the plates, then there will be an electric field between them. The potential difference between two parallel plates ''V'' can be derived mathematically as V = where ''d'' is the plate separation and \varepsilon_0 is the permittivity of free space. The ability of the capacitor to store electrical potential energy is measured by the capacitance which is defined as C=Q/V and for a parallel plate capacitor this is C = If a dielectric is placed between the plates then the permittivity of free space is multiplied by the relative permittivity of the dielectric and the capacitance increases. The maximum energy that can be stored by a capacitor is proportional to the capacitance and the square of the potential difference between the plates E = \frac 1 2 CV^2


Inductors

An inductor is an electronic component that stores energy in a magnetic field inside a coil of wire. A current-carrying coil of wire induces a magnetic field according to Ampère's circuital law. The greater the current ''I'', the greater the energy stored in the magnetic field and the lower the inductance which is defined L= \Phi_B/I where \Phi_B is the magnetic flux produced by the coil of wire. The inductance is a measure of the circuit's resistance to a change in current and so inductors with high inductances can also be used to oppose alternating current.


Other circuit components


Circuit laws

Circuit theory Circuit may refer to: Science and technology Electrical engineering * Electrical circuit, a complete electrical network with a closed-loop giving a return path for current ** Analog circuit, uses continuous signal levels ** Balanced circu ...
deals with Electrical network, electrical networks where the fields are largely confined around current carrying conductors. In such circuits, simple circuit laws can be used instead of deriving all the behaviour of the circuits directly from electromagnetic laws. Ohm's law states the relationship between the current ''I'' and the voltage ''V'' of a circuit by introducing the quantity known as resistance ''R'' Ohm's law: I = V/R Electric power, Power is defined as P = IV so Ohm's law can be used to tell us the power of the circuit in terms of other quantities P = IV = V^2/R = I^2R Kirchhoff's circuit laws, Kirchhoff's junction rule states that the current going into a junction (or node) must equal the current that leaves the node. This comes from charge conservation, as current is defined as the flow of charge over time. If a current splits as it exits a junction, the sum of the resultant split currents is equal to the incoming circuit. Kirchhoff's circuit laws, Kirchhoff's loop rule states that the sum of the voltage in a closed loop around a circuit equals zero. This comes from the fact that the electric field is Conservative vector field, conservative which means that no matter the path taken, the potential at a point does not change when you get back there. Rules can also tell us how to add up quantities such as the current and voltage in series and parallel circuits. For series circuits, the current remains the same for each component and the voltages and resistances add up: V_ = V_1 + V_2 + V_3 + \ldots \qquad R_ = R_1 + R_2 + R_3 + \ldots \qquad I = I_1 = I_2 = I_3 = \ldots For parallel circuits, the voltage remains the same for each component and the currents and resistances are related as shown: V_ = V_1 = V_2 = V_3 = \ldots \qquad = + + + \ldots \qquad I_ = I_1 + I_2 + I_3 + \ldots


See also

* List of textbooks in electromagnetism, List of textbooks on electromagnetism


References

{{Introductory science articles Electromagnetism Introductory articles, electromagnetism