In the
mathematical
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
study of
metric space
In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
s, one can consider the
arclength of
path
A path is a route for physical travel – see Trail.
Path or PATH may also refer to:
Physical paths of different types
* Bicycle path
* Bridle path, used by people on horseback
* Course (navigation), the intended path of a vehicle
* Desir ...
s in the space. If two points are at a given distance from each other, it is natural to expect that one should be able to get from the first point to the second along a path whose arclength is equal to (or very close to) that distance. The distance between two points of a metric space relative to the intrinsic metric is defined as the
infimum
In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique ...
of the lengths of all paths from the first point to the second. A metric space is a length metric space if the intrinsic metric agrees with the original metric of the space.
If the space has the stronger property that there always exists a path that achieves the infimum of length (a
geodesic
In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
) then it is called a geodesic metric space or geodesic space. For instance, the
Euclidean plane
In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of eac ...
is a geodesic space, with
line segment
In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special c ...
s as its geodesics. The Euclidean plane with the
origin removed is not geodesic, but is still a length metric space.
Definitions
Let
be a
metric space
In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
, i.e.,
is a collection of points (such as all of the points in the plane, or all points on the circle) and
is a function that provides us with the ''distance'' between points
. We define a new metric
on
, known as the induced intrinsic metric, as follows:
is the
infimum
In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique ...
of the lengths of all paths from
to
.
Here, a ''path'' from
to
is a
continuous map
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
:
with
and
. The ''length'' of such a path is defined as explained for
rectifiable curves. We set
if there is no path of finite length from
to
(this is consistent with the infimum definition since the infimum of the
empty set
In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
within the closed interval
,+∞is +∞).
The mapping
is
idempotent
Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
, i.e.
:
If
:
for all points
and
in
, we say that
is a length space or a path metric space and the metric
is intrinsic.
We say that the metric
has approximate midpoints if for any
and any pair of points
and
in
there exists
in
such that
and
are both smaller than
:
Examples
*
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
with the ordinary Euclidean metric is a path metric space.
is as well.
* The
unit circle
In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
with the metric inherited from the Euclidean metric of
(the chordal metric) is not a path metric space. The induced intrinsic metric on
measures distances as
angle
In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R ...
s in
radian
The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at ...
s, and the resulting length metric space is called the
Riemannian circle. In two dimensions, the chordal metric on the
sphere
A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
is not intrinsic, and the induced intrinsic metric is given by the
great-circle distance
The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the ...
.
* Every connected
Riemannian manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
can be turned into a path metric space by defining the distance of two points as the infimum of the lengths of continuously differentiable curves connecting the two points. (The Riemannian structure allows one to define the length of such curves.) Analogously, other manifolds in which a length is defined included
Finsler manifolds and
sub-Riemannian manifolds.
* Any
complete and
convex metric space is a length metric space , a result of
Karl Menger
Karl Menger (; January 13, 1902 – October 5, 1985) was an Austrian-born American mathematician, the son of the economist Carl Menger. In mathematics, Menger studied the theory of algebra over a field, algebras and the dimension theory of low-r ...
. However, the converse does not hold, i.e. there exist length metric spaces that are not convex.
Properties
*In general, we have
and the
topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
defined by
is therefore always
finer than or equal to the one defined by
.
*The space
is always a path metric space (with the caveat, as mentioned above, that
can be infinite).
*The metric of a length space has approximate midpoints. Conversely, every
complete metric space with approximate midpoints is a length space.
*The
Hopf–Rinow theorem states that if a length space
is complete and
locally compact
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which e ...
then any two points in
can be connected by a
minimizing geodesic and all bounded
closed set
In geometry, topology, and related branches of mathematics, a closed set is a Set (mathematics), set whose complement (set theory), complement is an open set. In a topological space, a closed set can be defined as a set which contains all its lim ...
s in
are
compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact, a type of agreement used by U.S. states
* Blood compact, an ancient ritual of the Philippines
* Compact government, a t ...
.
References
* Herbert Busemann, Selected Works, (Athanase Papadopoulos, ed.) Volume I, 908 p., Springer International Publishing, 2018.
* Herbert Busemann, Selected Works, (Athanase Papadopoulos, ed.) Volume II, 842 p., Springer International Publishing, 2018.
*
*
{{Metric spaces
Metric geometry