HOME

TheInfoList



OR:

Physical or
chemical A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combin ...
properties of materials and
system A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its open system (systems theory), environment, is described by its boundaries, str ...
s can often be categorized as being either intensive or extensive, according to how the property changes when the size (or extent) of the system changes. The terms "intensive and extensive quantities" were introduced into physics by German mathematician Georg Helm in 1898, and by American physicist and chemist Richard C. Tolman in 1917.
/ref> According to
International Union of Pure and Applied Chemistry The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
(IUPAC), an intensive property or intensive quantity is one whose magnitude is independent of the size of the system. An intensive property is not necessarily homogeneously distributed in space; it can vary from place to place in a body of matter and radiation. Examples of intensive properties include
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
, ''T'';
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
, ''n'';
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
, ''ρ''; and
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to plastic deformation, such as an indentation (over an area) or a scratch (linear), induced mechanically either by Pressing (metalworking), pressing or abrasion ...
, ''η''. By contrast, an extensive property or extensive quantity is one whose magnitude is additive for subsystems. Examples include
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
,
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
and Gibbs energy. Not all properties of matter fall into these two categories. For example, the square root of the volume is neither intensive nor extensive. If a system is doubled in size by juxtaposing a second identical system, the value of an intensive property equals the value for each subsystem and the value of an extensive property is twice the value for each subsystem. However the property √V is instead multiplied by √2 . The distinction between intensive and extensive properties has some theoretical uses. For example, in thermodynamics, the state of a simple compressible system is completely specified by two independent, intensive properties, along with one extensive property, such as mass. Other intensive properties are derived from those two intensive variables.


Intensive properties

An intensive property is a
physical quantity A physical quantity (or simply quantity) is a property of a material or system that can be Quantification (science), quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a ''nu ...
whose value does not depend on the amount of substance which was measured. The most obvious intensive quantities are ratios of extensive quantities. In a homogeneous system divided into two halves, all its extensive properties, in particular its volume and its mass, are divided into two halves. All its intensive properties, such as the mass per volume (mass density) or volume per mass ( specific volume), must remain the same in each half. The
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
of a system in thermal equilibrium is the same as the temperature of any part of it, so temperature is an intensive quantity. If the system is divided by a wall that is permeable to heat or to matter, the temperature of each subsystem is identical. Additionally, the boiling temperature of a substance is an intensive property. For example, the boiling temperature of water is 100 °C at a pressure of one
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
, regardless of the quantity of water remaining as liquid.


Examples

Examples of intensive properties include: * charge density, ''ρ'' (or ''ne'') *
chemical potential In thermodynamics, the chemical potential of a Chemical specie, species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potent ...
, ''μ'' *
color Color (or colour in English in the Commonwealth of Nations, Commonwealth English; American and British English spelling differences#-our, -or, see spelling differences) is the visual perception based on the electromagnetic spectrum. Though co ...
*
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', '' molar concentration'', '' number concentration'', ...
, ''c'' * energy density, ''ρ'' * magnetic permeability, ''μ'' * mass
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
, ''ρ'' (or
specific gravity Relative density, also called specific gravity, is a dimensionless quantity defined as the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material. Specific gravity for solids and liquids is nea ...
) *
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state of matter, state from solid to liquid. At the melting point the solid and liquid phase (matter), phase exist in Thermodynamic equilib ...
and
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envi ...
*
molality In chemistry, molality is a measure of the amount of solute in a solution relative to a given mass of solvent. This contrasts with the definition of '' molarity'' which is based on a given volume of solution. A commonly used unit for molality ...
, ''m'' or ''b'' *
molar mass In chemistry, the molar mass () (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical substance ( element or compound) is defined as the ratio between the mass () and the amount of substance ...
, ''M'' *
molar volume In chemistry and related fields, the molar volume, symbol ''V''m, or \tilde V of a substance is the ratio of the volume (''V'') occupied by a substance to the amount of substance (''n''), usually at a given temperature and pressure. It is also eq ...
, ''V'' *
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
, ''p'' *
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
* specific conductance (or electrical conductivity) *
specific heat capacity In thermodynamics, the specific heat capacity (symbol ) of a substance is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. It is also referred to as massic heat ...
, ''cp'' *
specific internal energy The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, account ...
, ''u'' * specific rotation, 'α''* specific volume, ''v'' * standard reduction potential, ''E°'' *
surface tension Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension (physics), tension is what allows objects with a higher density than water such as razor blades and insects (e.g. Ge ...
*
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
, ''T'' *
thermal conductivity The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1. Heat transfer occurs at a lower rate in materials of low ...
*
velocity Velocity is a measurement of speed in a certain direction of motion. It is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of physical objects. Velocity is a vector (geometry), vector Physical q ...
''v'' *
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
See List of materials properties for a more exhaustive list specifically pertaining to materials.


Extensive properties

An extensive property is a physical quantity whose value is proportional to the size of the
system A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its open system (systems theory), environment, is described by its boundaries, str ...
it describes, or to the quantity of matter in the system. For example, the mass of a sample is an extensive quantity; it depends on the amount of substance. The related intensive quantity is the density which is independent of the amount. The density of water is approximately 1g/mL whether you consider a drop of water or a swimming pool, but the mass is different in the two cases. Dividing one extensive property by another extensive property gives an intensive property—for example:
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
(extensive) divided by
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
(extensive) gives
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
(intensive). Any extensive quantity E for a sample can be divided by the sample's volume, to become the "E density" for the sample; similarly, any extensive quantity "E" can be divided by the sample's mass, to become the sample's "specific E"; extensive quantities "E" which have been divided by the number of moles in their sample are referred to as "molar E".


Examples

Examples of extensive properties include: *
amount of substance In chemistry, the amount of substance (symbol ) in a given sample of matter is defined as a ratio () between the particle number, number of elementary entities () and the Avogadro constant (). The unit of amount of substance in the International ...
, ''n'' *
enthalpy Enthalpy () is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant extern ...
, ''H'' *
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
, ''S'' * Gibbs energy, ''G'' *
heat capacity Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is a ...
, ''Cp'' * Helmholtz energy, ''A'' or ''F'' *
internal energy The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accoun ...
, ''U'' * spring stiffness, ''K'' *
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
, ''m'' *
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
, ''V''


Conjugate quantities

In thermodynamics, some extensive quantities measure amounts that are conserved in a thermodynamic process of transfer. They are transferred across a wall between two thermodynamic systems or subsystems. For example, species of matter may be transferred through a semipermeable membrane. Likewise, volume may be thought of as transferred in a process in which there is a motion of the wall between two systems, increasing the volume of one and decreasing that of the other by equal amounts. On the other hand, some extensive quantities measure amounts that are not conserved in a thermodynamic process of transfer between a system and its surroundings. In a thermodynamic process in which a quantity of energy is transferred from the surroundings into or out of a system as heat, a corresponding quantity of entropy in the system respectively increases or decreases, but, in general, not in the same amount as in the surroundings. Likewise, a change in the amount of electric polarization in a system is not necessarily matched by a corresponding change in electric polarization in the surroundings. In a thermodynamic system, transfers of extensive quantities are associated with changes in respective specific intensive quantities. For example, a volume transfer is associated with a change in pressure. An entropy change is associated with a temperature change. A change in the amount of electric polarization is associated with an electric field change. The transferred extensive quantities and their associated respective intensive quantities have dimensions that multiply to give the dimensions of energy. The two members of such respective specific pairs are mutually conjugate. Either one, but not both, of a conjugate pair may be set up as an independent state variable of a thermodynamic system. Conjugate setups are associated by Legendre transformations.


Composite properties

The ratio of two extensive properties of the same object or system is an intensive property. For example, the ratio of an object's mass and volume, which are two extensive properties, is density, which is an intensive property. More generally properties can be combined to give new properties, which may be called derived or composite properties. For example, the base quantities mass and volume can be combined to give the derived quantity density. These composite properties can sometimes also be classified as intensive or extensive. Suppose a composite property F is a function of a set of intensive properties \ and a set of extensive properties \, which can be shown as F(\,\). If the size of the system is changed by some scaling factor, \lambda, only the extensive properties will change, since intensive properties are independent of the size of the system. The scaled system, then, can be represented as F(\,\). Intensive properties are independent of the size of the system, so the property F is an intensive property if for all values of the scaling factor, \lambda, :F(\,\) = F(\,\).\, (This is equivalent to saying that intensive composite properties are
homogeneous function In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar (mathematics), scalar, then the function's value is multiplied by some p ...
s of degree 0 with respect to \.) It follows, for example, that the
ratio In mathematics, a ratio () shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
of two extensive properties is an intensive property. To illustrate, consider a system having a certain mass, m, and volume, V. The density, \rho is equal to mass (extensive) divided by volume (extensive): \rho=\frac. If the system is scaled by the factor \lambda, then the mass and volume become \lambda m and \lambda V, and the density becomes \rho=\frac; the two \lambdas cancel, so this could be written mathematically as \rho (\lambda m, \lambda V) = \rho (m, V), which is analogous to the equation for F above. The property F is an extensive property if for all \lambda, :F(\,\)=\lambda F(\,\).\, (This is equivalent to saying that extensive composite properties are
homogeneous function In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar (mathematics), scalar, then the function's value is multiplied by some p ...
s of degree 1 with respect to \.) It follows from
Euler's homogeneous function theorem In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; ...
that :F(\,\)=\sum_j A_j \left(\frac\right), where the
partial derivative In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). P ...
is taken with all parameters constant except A_j. This last equation can be used to derive thermodynamic relations.


Specific properties

A ''specific'' property is the intensive property obtained by dividing an extensive property of a system by its mass. For example, heat capacity is an extensive property of a system. Dividing heat capacity, C_p, by the mass of the system gives the specific heat capacity, c_p, which is an intensive property. When the extensive property is represented by an upper-case letter, the symbol for the corresponding intensive property is usually represented by a lower-case letter. Common examples are given in the table below.


Molar properties

If the amount of substance in moles can be determined, then each of these thermodynamic properties may be expressed on a molar basis, and their name may be qualified with the adjective '' molar'', yielding terms such as molar volume, molar internal energy, molar enthalpy, and molar entropy. The symbol for molar quantities may be indicated by adding a subscript "m" to the corresponding extensive property. For example, molar enthalpy is H_. Molar Gibbs free energy is commonly referred to as
chemical potential In thermodynamics, the chemical potential of a Chemical specie, species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potent ...
, symbolized by \mu, particularly when discussing a partial molar Gibbs free energy \mu_i for a component i in a mixture. For the characterization of substances or reactions, tables usually report the molar properties referred to a standard state. In that case a superscript ^ is added to the symbol. Examples: * V_^ = is the molar volume of an
ideal gas An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is ...
at standard conditions of () and (). * C_^ is the standard molar heat capacity of a substance at constant pressure. * \mathrm \Delta_ H_^ is the standard enthalpy variation of a reaction (with subcases: formation enthalpy, combustion enthalpy...). * E^ is the standard reduction potential of a redox couple, i.e. Gibbs energy over charge, which is measured in
volt The volt (symbol: V) is the unit of electric potential, Voltage#Galvani potential vs. electrochemical potential, electric potential difference (voltage), and electromotive force in the International System of Units, International System of Uni ...
= J/C.


Limitations

The general validity of the division of physical properties into extensive and intensive kinds has been addressed in the course of science. Redlich noted that, although physical properties and especially thermodynamic properties are most conveniently defined as either intensive or extensive, these two categories are not all-inclusive and some well-defined concepts like the square-root of a volume conform to neither definition. Other systems, for which standard definitions do not provide a simple answer, are systems in which the subsystems interact when combined. Redlich pointed out that the assignment of some properties as intensive or extensive may depend on the way subsystems are arranged. For example, if two identical galvanic cells are connected in parallel, the
voltage Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a Electrostatics, static electric field, it corresponds to the Work (electrical), ...
of the system is equal to the voltage of each cell, while the
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
transferred (or the
electric current An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge c ...
) is extensive. However, if the same cells are connected in series, the charge becomes intensive and the voltage extensive. The IUPAC definitions do not consider such cases. Some intensive properties do not apply at very small sizes. For example,
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
is a
macroscopic The macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic. Overview When applied to physical phenome ...
quantity Quantity or amount is a property that can exist as a multitude or magnitude, which illustrate discontinuity and continuity. Quantities can be compared in terms of "more", "less", or "equal", or by assigning a numerical value multiple of a u ...
and is not relevant for extremely small systems. Likewise, at a very small scale
color Color (or colour in English in the Commonwealth of Nations, Commonwealth English; American and British English spelling differences#-our, -or, see spelling differences) is the visual perception based on the electromagnetic spectrum. Though co ...
is not independent of size, as shown by quantum dots, whose color depends on the size of the "dot".


References


Further reading

{{DEFAULTSORT:Intensive And Extensive Properties Physical quantities Thermodynamic properties Chemical quantities