Imprinted Gene
   HOME

TheInfoList



OR:

Genomic imprinting is an
epigenetic In biology, epigenetics is the study of changes in gene expression that happen without changes to the DNA sequence. The Greek prefix ''epi-'' (ἐπι- "over, outside of, around") in ''epigenetics'' implies features that are "on top of" or "in ...
phenomenon that causes
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
s to be expressed or not, depending on whether they are inherited from the female or male parent. Genes can also be partially imprinted. Partial imprinting occurs when
allele An allele is a variant of the sequence of nucleotides at a particular location, or Locus (genetics), locus, on a DNA molecule. Alleles can differ at a single position through Single-nucleotide polymorphism, single nucleotide polymorphisms (SNP), ...
s from both parents are differently expressed rather than complete expression and complete suppression of one parent's allele. Forms of genomic imprinting have been demonstrated in fungi, plants and animals. In 2014, there were about 150 imprinted genes known in mice and about half that in humans. As of 2019, 260 imprinted genes have been reported in mice and 228 in humans. Genomic imprinting is an inheritance process independent of the classical
Mendelian inheritance Mendelian inheritance (also known as Mendelism) is a type of biological inheritance following the principles originally proposed by Gregor Mendel in 1865 and 1866, re-discovered in 1900 by Hugo de Vries and Carl Correns, and later popularize ...
. It is an epigenetic process that involves
DNA methylation DNA methylation is a biological process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter (genetics), promoter, DNA methylati ...
and
histone methylation Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins that make up nucleosomes, which the DNA double helix wraps around to form chromosomes. Methylation of histones can either increase or decrea ...
without altering the genetic sequence. These epigenetic marks are established ("imprinted") in the
germline In biology and genetics, the germline is the population of a multicellular organism's cells that develop into germ cells. In other words, they are the cells that form gametes ( eggs and sperm), which can come together to form a zygote. They dif ...
(sperm or egg cells) of the parents and are maintained through
mitotic Mitosis () is a part of the cell cycle in eukaryotic cells in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis is an equational division which gives rise to genetically identical cells in which the t ...
cell divisions in the
somatic cell In cellular biology, a somatic cell (), or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Somatic cells compose the body of an organism ...
s of an organism. Appropriate imprinting of certain genes is important for normal development. Human diseases involving genomic imprinting include
Angelman Angelman syndrome (AS) is a genetic disorder that affects approximately 1 in 15,000 individuals. AS impairs the function of the nervous system, producing symptoms, such as severe intellectual disability, developmental disability, limited to no ...
, Prader–Willi, and Beckwith–Wiedemann syndromes. Methylation defects have also been associated with male
infertility In biology, infertility is the inability of a male and female organism to Sexual reproduction, reproduce. It is usually not the natural state of a healthy organism that has reached sexual maturity, so children who have not undergone puberty, whi ...
.


Overview

In
diploid Ploidy () is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Here ''sets of chromosomes'' refers to the number of maternal and paternal chromosome copies, ...
organisms (like humans), the somatic cells possess two copies of the
genome A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...
, one inherited from the male and one from the female. Each
autosomal An autosome is any chromosome that is not a sex chromosome. The members of an autosome pair in a diploid cell have the same morphology, unlike those in allosomal (sex chromosome) pairs, which may have different structures. The DNA in autosome ...
gene is therefore represented by two copies, or alleles, with one copy inherited from each parent at
fertilization Fertilisation or fertilization (see American and British English spelling differences#-ise, -ize (-isation, -ization), spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give ...
. The expressed allele is dependent upon its parental origin. For example, the gene encoding
insulin-like growth factor 2 Insulin-like growth factor 2 (IGF-2) is one of three protein hormones that share structural similarity to insulin. The MeSH definition reads: "A well-characterized neutral peptide believed to be secreted by the liver and to circulate in the bloo ...
(IGF2/Igf2) is only expressed from the allele inherited from the male. Although imprinting accounts for a small proportion of mammalian genes, they play an important role in embryogenesis particularly in the formation of visceral structures and the nervous system. The term "imprinting" was first used to describe events in the insect '' Pseudococcus nipae''. In Pseudococcids (
mealybug Mealybugs are insects in the family Pseudococcidae, unarmored scale insects found in moist, warm habitats. Of the more than 2,000 described species, many are considered pests as they feed on plant juices of greenhouse plants, house plants and ...
s) (
Hemiptera Hemiptera (; ) is an order of insects, commonly called true bugs, comprising more than 80,000 species within groups such as the cicadas, aphids, planthoppers, leafhoppers, assassin bugs, bed bugs, and shield bugs. They range in size from ...
,
Coccoidea Scale insects are small insects of the Order (biology), order Hemiptera, suborder Sternorrhyncha. Of dramatically variable appearance and extreme sexual dimorphism, they comprise the infraorder Coccomorpha which is considered a more convenient g ...
) both the male and female develop from a fertilised egg. In females, all chromosomes remain euchromatic and functional. In embryos destined to become males, one
haploid Ploidy () is the number of complete sets of chromosomes in a cell (biology), cell, and hence the number of possible alleles for Autosome, autosomal and Pseudoautosomal region, pseudoautosomal genes. Here ''sets of chromosomes'' refers to the num ...
set of chromosomes becomes
heterochromatin Heterochromatin is a tightly packed form of DNA or '' condensed DNA'', which comes in multiple varieties. These varieties lie on a continuum between the two extremes of constitutive heterochromatin and facultative heterochromatin. Both play a rol ...
ised after the sixth cleavage division and remains so in most tissues; males are thus functionally haploid.


Imprinted genes in mammals

That imprinting might be a feature of mammalian development was suggested in breeding experiments in mice carrying reciprocal
chromosomal translocation In genetics, chromosome translocation is a phenomenon that results in unusual rearrangement of chromosomes. This includes "balanced" and "unbalanced" translocation, with three main types: "reciprocal", "nonreciprocal" and "Robertsonian" transloc ...
s. Nucleus transplantation experiments in
mouse A mouse (: mice) is a small rodent. Characteristically, mice are known to have a pointed snout, small rounded ears, a body-length scaly tail, and a high breeding rate. The best known mouse species is the common house mouse (''Mus musculus'' ...
zygotes in the early 1980s confirmed that normal development requires the contribution of both the maternal and paternal genomes. The vast majority of mouse embryos derived from
parthenogenesis Parthenogenesis (; from the Greek + ) is a natural form of asexual reproduction in which the embryo develops directly from an egg without need for fertilization. In animals, parthenogenesis means the development of an embryo from an unfertiliz ...
(called parthenogenones, with two maternal or egg genomes) and
androgenesis Androgenesis is a system of asexual reproduction that requires the presence of eggs and occurs when a zygote is produced with only paternal nuclear genes. During standard sexual reproduction, one female parent and one male parent each produce h ...
(called androgenones, with two paternal or sperm genomes) die at or before the blastocyst/implantation stage. In the rare instances that they develop to postimplantation stages, gynogenetic embryos show better embryonic development relative to placental development, while for androgenones, the reverse is true. Nevertheless, for the latter, only a few have been described (in a 1984 paper). Nevertheless, in 2018 genome editing allowed for bipaternal and viable bimaternal mouse and even (in 2022) parthenogenesis, still this is far from full reimprinting. Finally in March 2023 viable bipaternal embryos were created. No naturally occurring cases of parthenogenesis exist in mammals because of imprinted genes. However, in 2004, experimental manipulation by Japanese researchers of a paternal methylation imprint controlling the '' Igf2'' gene led to the birth of a mouse (named Kaguya) with two maternal sets of chromosomes, though it is not a true parthenogenone since cells from two different female mice were used. The researchers were able to succeed by using one egg from an immature parent, thus reducing maternal imprinting, and modifying it to express the gene Igf2, which is normally only expressed by the paternal copy of the gene. Parthenogenetic/gynogenetic embryos have twice the normal expression level of maternally derived genes, and lack expression of paternally expressed genes, while the reverse is true for androgenetic embryos. It is now known that there are at least 80 imprinted genes in humans and mice, many of which are involved in embryonic and placental growth and development.
Hybrid Hybrid may refer to: Science * Hybrid (biology), an offspring resulting from cross-breeding ** Hybrid grape, grape varieties produced by cross-breeding two ''Vitis'' species ** Hybridity, the property of a hybrid plant which is a union of two diff ...
offspring of two species may exhibit unusual growth due to the novel combination of imprinted genes. Various methods have been used to identify imprinted genes. In swine, Bischoff ''et al.'' compared transcriptional profiles using
DNA microarray A DNA microarray (also commonly known as a DNA chip or biochip) is a collection of microscopic DNA spots attached to a solid surface. Scientists use DNA microarrays to measure the expression levels of large numbers of genes simultaneously or t ...
s to survey differentially expressed genes between parthenotes (2 maternal genomes) and control fetuses (1 maternal, 1 paternal genome). An intriguing study surveying the
transcriptome The transcriptome is the set of all RNA transcripts, including coding and non-coding, in an individual or a population of cells. The term can also sometimes be used to refer to all RNAs, or just mRNA, depending on the particular experiment. The ...
of
murine The Old World rats and mice, part of the subfamily Murinae in the family Muridae, comprise at least 519 species. Members of this subfamily are called murines. In terms of species richness, this subfamily is larger than all mammal families excep ...
brain tissues revealed over 1300 imprinted gene loci (approximately 10-fold more than previously reported) by RNA-sequencing from F1 hybrids resulting from reciprocal crosses. The result however has been challenged by others who claimed that this is an overestimation by an order of magnitude due to flawed statistical analysis. In domesticated livestock,
single-nucleotide polymorphism In genetics and bioinformatics, a single-nucleotide polymorphism (SNP ; plural SNPs ) is a germline substitution of a single nucleotide at a specific position in the genome. Although certain definitions require the substitution to be present in a ...
s in imprinted genes influencing
foetal A fetus or foetus (; : fetuses, foetuses, rarely feti or foeti) is the unborn offspring of a viviparous animal that develops from an embryo. Following the embryonic development, embryonic stage, the fetal stage of development takes place. Pren ...
growth and development have been shown to be associated with economically important production traits in cattle, sheep and pigs.


Genetic mapping of imprinted genes

At the same time as the generation of the gynogenetic and androgenetic embryos discussed above, mouse embryos were also being generated that contained only small regions that were derived from either a paternal or maternal source. The generation of a series of such uniparental disomies, which together span the entire genome, allowed the creation of an imprinting map. Those regions which when inherited from a single parent result in a discernible phenotype contain imprinted gene(s). Further research showed that within these regions there were often numerous imprinted genes. Around 80% of imprinted genes are found in clusters such as these, called imprinted domains, suggesting a level of co-ordinated control. More recently, genome-wide screens to identify imprinted genes have used differential expression of mRNAs from control fetuses and parthenogenetic or androgenetic fetuses hybridized to
gene expression profiling In the field of molecular biology, gene expression profiling is the measurement of the activity (the gene expression, expression) of thousands of genes at once, to create a global picture of cellular function. These profiles can, for example, dis ...
microarrays, allele-specific gene expression using
SNP genotyping SNP genotyping is the measurement of genetic variations of single nucleotide polymorphisms (SNPs) between members of a species. It is a form of genotyping, which is the measurement of more general genetic variation. SNPs are one of the most commo ...
microarrays, transcriptome sequencing, and in silico prediction pipelines.


Imprinting mechanisms

Imprinting is a dynamic process. It must be possible to erase and re-establish imprints through each generation so that genes that are imprinted in an adult may still be expressed in that adult's offspring. (For example, the maternal genes that control insulin production will be imprinted in a male but will be expressed in any of the male's offspring that inherit these genes.) The nature of imprinting must therefore be
epigenetic In biology, epigenetics is the study of changes in gene expression that happen without changes to the DNA sequence. The Greek prefix ''epi-'' (ἐπι- "over, outside of, around") in ''epigenetics'' implies features that are "on top of" or "in ...
rather than DNA sequence dependent. In
germline In biology and genetics, the germline is the population of a multicellular organism's cells that develop into germ cells. In other words, they are the cells that form gametes ( eggs and sperm), which can come together to form a zygote. They dif ...
cells the imprint is erased and then re-established according to the
sex Sex is the biological trait that determines whether a sexually reproducing organism produces male or female gametes. During sexual reproduction, a male and a female gamete fuse to form a zygote, which develops into an offspring that inheri ...
of the individual, i.e. in the developing sperm (during
spermatogenesis Spermatogenesis is the process by which haploid spermatozoa develop from germ cells in the seminiferous tubules of the testicle. This process starts with the Mitosis, mitotic division of the stem cells located close to the basement membrane of ...
), a paternal imprint is established, whereas in developing oocytes (
oogenesis Oogenesis () or ovogenesis is the differentiation of the ovum (egg cell) into a cell competent to further develop when fertilized. It is developed from the primary oocyte by maturation. Oogenesis is initiated before birth during embryonic devel ...
), a maternal imprint is established. This process of erasure and
reprogramming In biology, reprogramming refers to erasure and remodeling of epigenetic marks, such as DNA methylation, during mammalian development or in cell culture. Such control is also often associated with alternative covalent modifications of histones. ...
is necessary such that the germ cell imprinting status is relevant to the sex of the individual. In both plants and mammals there are two major mechanisms that are involved in establishing the imprint; these are
DNA methylation DNA methylation is a biological process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter (genetics), promoter, DNA methylati ...
and
histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes ...
modifications. Recently, a new study has suggested a novel inheritable imprinting mechanism in humans that would be specific of
placenta The placenta (: placentas or placentae) is a temporary embryonic and later fetal organ that begins developing from the blastocyst shortly after implantation. It plays critical roles in facilitating nutrient, gas, and waste exchange between ...
l tissue and that is independent of DNA methylation (the main and classical mechanism for genomic imprinting). This was observed in humans, but not in mice, suggesting development after the evolutionary divergence of humans and mice, ~80 Mya. Among the hypothetical explanations for this novel phenomenon, two possible mechanisms have been proposed: either a histone modification that confers imprinting at novel placental-specific imprinted ''loci'' or, alternatively, a recruitment of DNMTs to these loci by a specific and unknown
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription (genetics), transcription of genetics, genetic information from DNA to messenger RNA, by binding t ...
that would be expressed during early trophoblast differentiation.


Regulation

The grouping of imprinted genes within clusters allows them to share common regulatory elements, such as
non-coding RNA A non-coding RNA (ncRNA) is a functional RNA molecule that is not Translation (genetics), translated into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often called an RNA gene. Abundant and functionally imp ...
s and
differentially methylated regions (DMRs) Differentially methylated regions (DMRs) are genomic regions with different DNA methylation status across different biological samples and regarded as possible functional regions involved in gene transcriptional regulation. The biological samples ...
. When these regulatory elements control the imprinting of one or more genes, they are known as imprinting control regions (ICR). The expression of
non-coding RNA A non-coding RNA (ncRNA) is a functional RNA molecule that is not Translation (genetics), translated into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often called an RNA gene. Abundant and functionally imp ...
s, such as antisense Igf2r RNA (''Air'') on mouse chromosome 17 and KCNQ1OT1 on human chromosome 11p15.5, have been shown to be essential for the imprinting of genes in their corresponding regions. Differentially methylated regions are generally segments of DNA rich in
cytosine Cytosine () (symbol C or Cyt) is one of the four nucleotide bases found in DNA and RNA, along with adenine, guanine, and thymine ( uracil in RNA). It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attac ...
and
guanine Guanine () (symbol G or Gua) is one of the four main nucleotide bases found in the nucleic acids DNA and RNA, the others being adenine, cytosine, and thymine ( uracil in RNA). In DNA, guanine is paired with cytosine. The guanine nucleoside ...
nucleotides, with the cytosine nucleotides methylated on one copy but not on the other. Contrary to expectation, methylation does not necessarily mean silencing; instead, the effect of methylation depends upon the default state of the region.


Functions of imprinted genes

The control of expression of specific genes by genomic imprinting is unique to
theria Theria ( or ; ) is a scientific classification, subclass of mammals amongst the Theriiformes. Theria includes the eutherians (including the Placentalia, placental mammals) and the metatherians (including the marsupials) but excludes the egg-lay ...
n mammals (
placental mammals Placental mammals ( infraclass Placentalia ) are one of the three extant subdivisions of the class Mammalia, the other two being Monotremata and Marsupialia. Placentalia contains the vast majority of extant mammals, which are partly distinguish ...
and
marsupials Marsupials are a diverse group of mammals belonging to the infraclass Marsupialia. They are natively found in Australasia, Wallacea, and the Americas. One of marsupials' unique features is their reproductive strategy: the young are born in a ...
) and flowering plants. Imprinting of whole chromosomes has been reported in mealybugs (Genus: '' Pseudococcus'') and a
fungus gnat Fungus gnats are small, dark, short-lived gnats, of the families Sciaridae, Diadocidiidae, Ditomyiidae, Keroplatidae, Bolitophilidae, and Mycetophilidae (order Diptera); they comprise six of the seven families placed in the superfamily Sc ...
(''Sciara''). It has also been established that
X-chromosome The X chromosome is one of the two sex chromosomes in many organisms, including mammals, and is found in both males and females. It is a part of the XY sex-determination system and XO sex-determination system. The X chromosome was named for its u ...
inactivation occurs in an imprinted manner in the extra-embryonic tissues of mice and all tissues in marsupials, where it is always the paternal X-chromosome which is silenced. The majority of imprinted genes in mammals have been found to have roles in the control of embryonic growth and development, including development of the placenta. Other imprinted genes are involved in post-natal development, with roles affecting suckling and metabolism.


Hypotheses on the origins of imprinting

A widely accepted hypothesis for the evolution of genomic imprinting is the "parental conflict hypothesis". Also known as the kinship theory of genomic imprinting, this hypothesis states that the inequality between parental genomes due to imprinting is a result of the differing interests of each parent in terms of the evolutionary fitness of their genes. The
father A father is the male parent of a child. Besides the paternal bonds of a father to his children, the father may have a parental, legal, and social relationship with the child that carries with it certain rights and obligations. A biological fat ...
's genes that encode for imprinting gain greater fitness through the success of the offspring, at the expense of the
mother A mother is the female parent of a child. A woman may be considered a mother by virtue of having given birth, by raising a child who may or may not be her biological offspring, or by supplying her ovum for fertilisation in the case of ges ...
. The mother's evolutionary imperative is often to conserve resources for her own survival while providing sufficient nourishment to current and subsequent litters. Accordingly, paternally expressed genes tend to be growth-promoting whereas maternally expressed genes tend to be growth-limiting. In support of this hypothesis, genomic imprinting has been found in all placental mammals, where post-fertilisation offspring resource consumption at the expense of the mother is high; although it has also been found in
oviparous Oviparous animals are animals that reproduce by depositing fertilized zygotes outside the body (i.e., by laying or spawning) in metabolically independent incubation organs known as eggs, which nurture the embryo into moving offsprings kno ...
birds where there is relatively little post-fertilisation resource transfer and therefore less parental conflict. A small number of imprinted genes are fast evolving under positive Darwinian selection possibly due to antagonistic co-evolution. The majority of imprinted genes display high levels of micro-
synteny In genetics, the term synteny refers to two related concepts: * In classical genetics, ''synteny'' describes the physical co-localization of genetic loci on the same chromosome within an individual or species. * In current biology, ''synteny'' m ...
conservation and have undergone very few duplications in placental mammalian lineages. However, our understanding of the molecular mechanisms behind genomic imprinting show that it is the maternal genome that controls much of the imprinting of both its own and the paternally-derived genes in the zygote, making it difficult to explain why the maternal genes would willingly relinquish their dominance to that of the paternally-derived genes in light of the conflict hypothesis. Another hypothesis proposed is that some imprinted genes act coadaptively to improve both fetal development and maternal provisioning for nutrition and care. In it, a subset of paternally expressed genes are co-expressed in both the placenta and the mother's hypothalamus. This would come about through selective pressure from parent-infant coadaptation to improve infant survival. Paternally expressed 3 (''
PEG3 Paternally-expressed gene 3 protein is a protein that in humans is encoded by the ''PEG3'' gene. PEG3 is an imprinted gene expressed exclusively from the paternal allele and plays important roles in controlling fetal growth rates and nurturing be ...
'') is a gene for which this hypothesis may apply. Others have approached their study of the origins of genomic imprinting from a different side, arguing that
natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the Heredity, heritable traits characteristic of a population over generation ...
is operating on the role of epigenetic marks as machinery for homologous chromosome recognition during meiosis, rather than on their role in differential expression. This argument centers on the existence of epigenetic effects on chromosomes that do not directly affect gene expression, but do depend on which parent the chromosome originated from. This group of epigenetic changes that depend on the chromosome's parent of origin (including both those that affect gene expression and those that do not) are called parental origin effects, and include phenomena such as paternal
X inactivation X-inactivation (also called Lyonization, after English geneticist Mary F. Lyon, Mary Lyon) is a process by which one of the copies of the X chromosome is inactivated in therian female mammals. The inactive X chromosome is silenced by being ...
in the
marsupial Marsupials are a diverse group of mammals belonging to the infraclass Marsupialia. They are natively found in Australasia, Wallacea, and the Americas. One of marsupials' unique features is their reproductive strategy: the young are born in a r ...
s, nonrandom parental
chromatid A chromatid (Greek ''khrōmat-'' 'color' + ''-id'') is one half of a duplicated chromosome. Before replication, one chromosome is composed of one DNA molecule. In replication, the DNA molecule is copied, and the two molecules are known as chrom ...
distribution in the ferns, and even mating type switching in yeast. This diversity in organisms that show parental origin effects has prompted theorists to place the evolutionary origin of genomic imprinting before the last common ancestor of plants and animals, over a billion years ago. Natural selection for genomic imprinting requires genetic variation in a population. A hypothesis for the origin of this genetic variation states that the host-defense system responsible for silencing foreign DNA elements, such as genes of viral origin, mistakenly silenced genes whose silencing turned out to be beneficial for the organism. There appears to be an over-representation of retrotransposed genes, that is to say genes that are inserted into the genome by
virus A virus is a submicroscopic infectious agent that replicates only inside the living Cell (biology), cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Viruses are ...
es, among imprinted genes. It has also been postulated that if the retrotransposed gene is inserted close to another imprinted gene, it may just acquire this imprint.


Imprinted loci phenotypic signatures

Unfortunately, the relationship between the phenotype and genotype of imprinted genes is solely conceptual. The idea is frameworked using two alleles on a single locus and hosts three different possible classes of genotypes. The reciprocal heterozygotes genotype class contributes to understanding how imprinting will impact genotype to phenotype relationship. Reciprocal heterozygotes have a genetically equivalent, but they are phenotypically nonequivalent. Their phenotype may not be dependent on the equivalence of the genotype. This can ultimately increase diversity in genetic classes, expanding flexibility of imprinted genes. This increase will also force a higher degree in testing capabilities and assortment of tests to determine the presences of imprinting. When a locus is identified as imprinted, two different classes express different alleles. Inherited imprinted genes of offspring are believed to be monoallelic expressions. A single locus will entirely produce one's phenotype although two alleles are inherited. This genotype class is called parental imprinting, as well as dominant imprinting. Phenotypic patterns are variant to possible expressions from paternal and maternal genotypes. Different alleles inherited from different parents will host different phenotypic qualities. One allele will have a larger phenotypic value and the other allele will be silenced. Underdominance of the locus is another possibility of phenotypic expression. Both maternal and paternal phenotypes will have a small value rather than one hosting a large value and silencing the other. Statistical frameworks and mapping models are used to identify imprinting effects on genes and complex traits. Allelic parent-of-origin influences the vary in phenotype that derive from the imprinting of genotype classes. These models of mapping and identifying imprinting effects include using unordered genotypes to build mapping models. These models will show classic quantitative genetics and the effects of dominance of the imprinted genes.


Human disorders associated with imprinting

Imprinting may cause problems in
cloning Cloning is the process of producing individual organisms with identical genomes, either by natural or artificial means. In nature, some organisms produce clones through asexual reproduction; this reproduction of an organism by itself without ...
, with clones having DNA that is not
methylated Methylation, in the chemical sciences, is the addition of a methyl group on a substrate, or the substitution of an atom (or group) by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These term ...
in the correct positions. It is possible that this is due to a lack of time for reprogramming to be completely achieved. When a
nucleus Nucleus (: nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucleu ...
is added to an egg during
somatic cell nuclear transfer In genetics and developmental biology, somatic cell nuclear transfer (SCNT) is a laboratory strategy for creating a viable embryo from a body cell and an egg cell. The technique consists of taking a denucleated oocyte (egg cell) and implanti ...
, the egg starts dividing in minutes, as compared to the days or months it takes for reprogramming during
embryo An embryo ( ) is the initial stage of development for a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sp ...
nic development. If time is the responsible factor, it may be possible to delay cell division in clones, giving time for proper reprogramming to occur.
In vitro fertilisation In vitro fertilisation (IVF) is a process of fertilisation in which an ovum, egg is combined with spermatozoon, sperm in vitro ("in glass"). The process involves monitoring and stimulating the Ovulation cycle, ovulatory process, then removing ...
, including ICSI, is associated with an increased risk of imprinting disorders, with an
odds ratio An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of event A taking place in the presence of B, and the odds of A in the absence of B ...
of 3.7 (95% confidence interval 1.4 to 9.7).


Male infertility

Epigenetic deregulations at H19 imprinted gene in sperm have been observed associated with male
infertility In biology, infertility is the inability of a male and female organism to Sexual reproduction, reproduce. It is usually not the natural state of a healthy organism that has reached sexual maturity, so children who have not undergone puberty, whi ...
. Indeed, methylation loss at H19 imprinted gene has been observed associated with MTHFR gene promoter
hypermethylation Methylation, in the chemical sciences, is the addition of a methyl group on a substrate, or the substitution of an atom (or group) by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These terms ...
in semen samples from
infertile In biology, infertility is the inability of a male and female organism to reproduce. It is usually not the natural state of a healthy organism that has reached sexual maturity, so children who have not undergone puberty, which is the body's sta ...
males.


Prader-Willi/Angelman

The first imprinted
genetic disorder A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosome abnormality. Although polygenic disorders ...
s to be described in humans were the reciprocally inherited Prader-Willi syndrome and
Angelman syndrome Angelman syndrome (AS) is a genetic disorder that affects approximately 1 in 15,000 individuals. AS impairs the function of the nervous system, producing symptoms, such as severe intellectual disability, developmental disability, limited to no ...
. Both syndromes are associated with loss of the chromosomal region 15q11-13 (band 11 of the long arm of chromosome 15). This region contains the paternally expressed genes SNRPN and NDN and the maternally expressed gene
UBE3A Ubiquitin-protein ligase E3A (UBE3A) also known as E6AP ubiquitin-protein ligase (E6AP) is an enzyme that in humans is encoded by the ''UBE3A'' gene. This enzyme is involved in targeting proteins for degradation within cell (biology), cells. ...
. *Paternal inheritance of a deletion of this region is associated with Prader-Willi syndrome (characterised by
hypotonia Hypotonia is a state of low muscle tone (the amount of tension or resistance to stretch in a muscle), often involving reduced muscle strength. Hypotonia is not a specific medical disorder, but it is a potential manifestation of many different dis ...
,
obesity Obesity is a medical condition, considered by multiple organizations to be a disease, in which excess Adipose tissue, body fat has accumulated to such an extent that it can potentially have negative effects on health. People are classifi ...
, and
hypogonadism Hypogonadism means diminished functional activity of the human gonad, gonads—the testicles or the ovary, ovaries—that may result in diminished biosynthesis, production of sex hormones. Low androgen (e.g., testosterone) levels are referred t ...
). *Maternal inheritance of the same deletion is associated with
Angelman syndrome Angelman syndrome (AS) is a genetic disorder that affects approximately 1 in 15,000 individuals. AS impairs the function of the nervous system, producing symptoms, such as severe intellectual disability, developmental disability, limited to no ...
(characterised by
epilepsy Epilepsy is a group of Non-communicable disease, non-communicable Neurological disorder, neurological disorders characterized by a tendency for recurrent, unprovoked Seizure, seizures. A seizure is a sudden burst of abnormal electrical activit ...
,
tremor A tremor is an involuntary, somewhat rhythmic muscle contraction and relaxation involving neural oscillations, oscillations or twitching movements of one or more body parts. It is the most common of all involuntary movements and can affect the h ...
s, and a perpetually smiling facial expression).


Potential involvement in autism and schizophrenia


DIRAS3 (NOEY2 or ARH1)

DIRAS3 is a paternally expressed and maternally imprinted gene located on chromosome 1 in humans. Reduced DIRAS3 expression is linked to an increased risk of ovarian and breast cancers; in 41% of breast and ovarian cancers the protein encoded by DIRAS3 is not expressed, suggesting that it functions as a
tumor suppressor gene A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell (biology), cell during cell division and replication. If the cell grows uncontrollably, it will result in cancer. When a tumor suppressor gene is mutated, it results ...
. Therefore, if uniparental disomy occurs and a person inherits both chromosomes from the mother, the gene will not be expressed and the individual is put at a greater risk for breast and ovarian cancer.


Other

Other conditions involving imprinting include Beckwith-Wiedemann syndrome, Silver-Russell syndrome, and
pseudohypoparathyroidism Pseudohypoparathyroidism is a rare autosomal dominant genetic condition associated primarily with resistance to the parathyroid hormone. Those with the condition have a low serum calcium and high phosphate, but the parathyroid hormone level (PTH) ...
. Transient neonatal diabetes mellitus can also involve imprinting. The " imprinted brain hypothesis" argues that unbalanced imprinting may be a cause of
autism Autism, also known as autism spectrum disorder (ASD), is a neurodevelopmental disorder characterized by differences or difficulties in social communication and interaction, a preference for predictability and routine, sensory processing d ...
and
psychosis In psychopathology, psychosis is a condition in which a person is unable to distinguish, in their experience of life, between what is and is not real. Examples of psychotic symptoms are delusions, hallucinations, and disorganized or inco ...
.


Imprinted genes in other animals

In insects, imprinting affects entire chromosomes. In some insects the entire paternal genome is silenced in male offspring, and thus is involved in sex determination. The imprinting produces effects similar to the mechanisms in other insects that eliminate paternally inherited chromosomes in male offspring, including
arrhenotoky Arrhenotoky (from Greek ἄρρην ''árrhēn'' "male" and τόκος ''tókos'' "birth"), also known as arrhenotokous parthenogenesis, is a form of parthenogenesis in which unfertilized eggs develop into males. In most cases, parthenogenesis pro ...
. In social honey bees, the parent of origin and allele-specific genes has been studied from reciprocal crosses to explore the epigenetic mechanisms underlying aggressive behavior. In placental species, parent-offspring conflict can result in the evolution of strategies, such as genomic imprinting, for embryos to subvert maternal nutrient provisioning. Despite several attempts to find it, genomic imprinting has not been found in the platypus, reptiles, birds, or fish. The absence of genomic imprinting in a placental reptile, the
Pseudemoia entrecasteauxii ''Pseudemoia entrecasteauxii'', also known commonly as Entrecasteaux's skink, the southern grass skink, the tussock cool-skink, and the tussock skink, is a species of lizard in the family Scincidae. The species is endemic to Australia. Geograp ...
, is interesting as genomic imprinting was thought to be associated with the evolution of viviparity and placental nutrient transport. Studies in domestic livestock, such as dairy and beef cattle, have implicated imprinted genes (e.g. IGF2) in a range of economic traits, including dairy performance in Holstein-Friesian cattle. In sheep, the CLPG gene ("callipyge" from
Greek Greek may refer to: Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group *Greek language, a branch of the Indo-European language family **Proto-Greek language, the assumed last common ancestor of all kno ...
, meaning "beautiful buttocks") produces a large buttocks consisting of muscle with very little fat. The large-buttocked phenotype only occurs when the allele is present on the copy of chromosome 18 inherited from a sheep's father and is ''not'' on the copy of chromosome 18 inherited from that sheep's mother. The CLPG locus is encompassed by Dlk1-Gtl2, an imprinted region of the mammalian genome, and the atypical presentation of this gene is a result of this imprinting.


Mouse foraging behavior

Foraging behavior in mice studied is influenced by a sexually dimorphic allele expression implicating a cross-gender imprinting influence that varies throughout the body and may dominate expression and shape a behavior.


Imprinted genes in plants

A similar imprinting phenomenon has also been described in
flowering plant Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae (). The term angiosperm is derived from the Ancient Greek, Greek words (; 'container, vessel') and (; 'seed'), meaning that the seeds are enclosed with ...
s (angiosperms). During fertilization of the egg cell, a second, separate fertilization event gives rise to the
endosperm The endosperm is a tissue produced inside the seeds of most of the flowering plants following double fertilization. It is triploid (meaning three chromosome sets per nucleus) in most species, which may be auxin-driven. It surrounds the Embryo#Pla ...
, an extraembryonic structure that nourishes the embryo in a manner analogous to the mammalian
placenta The placenta (: placentas or placentae) is a temporary embryonic and later fetal organ that begins developing from the blastocyst shortly after implantation. It plays critical roles in facilitating nutrient, gas, and waste exchange between ...
. Unlike the embryo, the endosperm is often formed from the fusion of two maternal cells with a male
gamete A gamete ( ) is a Ploidy#Haploid and monoploid, haploid cell that fuses with another haploid cell during fertilization in organisms that Sexual reproduction, reproduce sexually. Gametes are an organism's reproductive cells, also referred to as s ...
. This results in a
triploid Polyploidy is a condition in which the cells of an organism have more than two paired sets of ( homologous) chromosomes. Most species whose cells have nuclei (eukaryotes) are diploid, meaning they have two complete sets of chromosomes, one fro ...
genome. The 2:1 ratio of maternal to paternal genomes appears to be critical for seed development. Some genes are found to be expressed from both maternal genomes while others are expressed exclusively from the lone paternal copy. It has been suggested that these imprinted genes are responsible for the triploid block effect in flowering plants that prevents hybridization between diploids and autotetraploids. Several computational methods to detect imprinting genes in plants from reciprocal crosses have been proposed.


See also

* Bookmarking *
Female sperm Female sperm can refer to either: #A sperm which contains an X chromosome, produced in the usual way in the testicles, referring to the occurrence of such a sperm fertilizing an egg and giving birth to a female. #A sperm which artificially contain ...
*
Male egg Male egg can refer to either: #An egg that artificially contains genetic material from a male. #An egg from a haplodiploid species such as an ant or bee that is unfertilized and will hatch a male #A fertilized egg that a male organism is develop ...
*
Metabolic imprinting Metabolic imprinting refers to the long-term physiological and metabolic effects that an offspring's prenatal and postnatal environments have on them. Perinatal nutrition has been identified as a significant factor in determining an offspring's lik ...
*
Original antigenic sin Original antigenic sin, also known as antigenic imprinting, the Hoskins effect, immunological imprinting, or primary addiction is the propensity of the immune system to preferentially use immunological memory based on a previous infection when a ...
, immunological imprinting


References


External links


geneimprint.comImprinted Gene and Parent-of-origin Effect Database
*
Harwell Mouse Imprinting Map

Gehring Lab (MIT) Imprinting Database
{{DEFAULTSORT:Genomic Imprinting Epigenetics Gene expression Molecular genetics