Anthropology and social sciences
InNeuroscience
We are capable of imitating movements, actions, skills, behaviors, gestures, pantomimes, mimics, vocalizations, sounds, speech, etc. and that we have particular "imitation systems" in the brain is old neurological knowledge dating back to Hugo Karl Liepmann. Liepmann's model 1908 "''Das hierarchische Modell der Handlungsplanung''" (the hierarchical model of action planning) is still valid. On studying the cerebral localization of function, Liepmann postulated that planned or commanded actions were prepared in the parietal lobe of the brain's dominant hemisphere, and also frontally. His most important pioneering work is when extensively studying patients with lesions in these brain areas, he discovered that the patients lost (among other things) the ability to imitate. He was the one who coined the term "apraxia" and differentiated between ideational and ideomotor apraxia. It is in this basic and wider frame of classical neurological knowledge that the discovery of the mirror neuron has to be seen. Though mirror neurons were first discovered in macaques, their discovery also relates to humans. Human brain studies using FMRI (Functional magnetic resonance imaging) revealed a network of regions in the inferior frontal cortex and inferior parietal cortex which are typically activated during imitation tasks. It has been suggested that these regions contain mirror neurons similar to the mirror neurons recorded in the macaque monkey. However, it is not clear if macaques spontaneously imitate each other in the wild. Neurologist V.S. Ramachandran argues that the evolution of mirror neurons were important in the human acquisition of complex skills such as language and believes the discovery of mirror neurons to be a most important advance in neuroscience. However, little evidence directly supports the theory that mirror neuron activity is involved in cognitive functions such asMirror neuron system
Research has been conducted to locate where in the brain specific parts and neurological systems are activated when humans imitate behaviors and actions of others, discovering a mirror neuron system. This neuron system allows a person to observe and then recreate the actions of others. Mirror neurons are premotor and parietal cells in the macaque brain that fire when the animal performs a goal directed action and when it sees others performing the same action." Evidence suggests that the mirror neuron system also allows people to comprehend and understand the intentions and emotions of others. Problems of the mirror neuron system may be correlated with the social inadequacies of autism. There have been many studies done showing that children with autism, compared with typically developing children, demonstrate reduced activity in the frontal mirror neuron system area when observing or imitating facial emotional expressions. Of course, the higher the severity of the disease, the lower the activity in the mirror neuron system is.Animal behavior
Scientists debate whether animals can consciously imitate the unconscious incitement from ''sentinel'' animals, whether imitation is uniquely human, or whether humans do a complex version of what other animals do. The current controversy is partly definitional. Thorndike uses "learning to do an act from seeing it done." It has two major shortcomings: first, by using "seeing" it restricts imitation to the visual domain and excludes, e.g., vocal imitation and, second, it would also include mechanisms such as priming, contagious behavior and social facilitation, which most scientist distinguish as separate forms of observational learning. Thorpe suggested defining imitation as "the copying of a novel or otherwise improbable act or utterance, or some act for which there is clearly no instinctive tendency." This definition is favored by many scholars, though questions have been raised how strictly the term "novel" has to be interpreted and how exactly a performed act has to match the demonstration to count as a copy. In 1952 Hayes & Hayes used the "do-as-I-do" procedure to demonstrate the imitative abilities of their trained chimpanzee "Viki." Their study was repeatedly criticized for its subjective interpretations of their subjects' responses. Replications of this study found much lower matching degrees between subjects and models. However, imitation research focusing on the copying fidelity got new momentum from a study by Voelkl and Huber. They analyzed the motionImitation in animals
Imitation in animals is a study in the field of social learning where learning behavior is observed in animals specifically how animals learn and adapt through imitation. Ethologists can classify imitation in animals by the learning of certain behaviors from conspecifics. More specifically, these behaviors are usually unique to the species and can be complex in nature and can benefit the individuals survival. Some scientists believe true imitation is only produced by humans, arguing that simple learning though sight is not enough to sustain as a being who can truly imitate. Thorpe defines true imitation as "the copying of a novel or otherwise improbable act or utterance, or some act for which there is clearly no instinctive tendency," which is highly debated for its portrayal of imitation as a mindless repeating act. True imitation is produced when behavioral,Theories
There are two types of theories of imitation, transformational and associative. Transformational theories suggest that theNew developments
There have been three major developments in the field ofChild development
Developmental psychologistInfants
Infants have the ability to reveal an understanding of certain outcomes before they occur, therefore in this sense they can somewhat imitate what they have perceived. Andrew N. Meltzoff, ran a series of tasks involving 14-month-old infants to imitate actions they perceived from adults. In this gathering he had concluded that the infants, before trying to reproduce the actions they wish to imitate, some how revealed an understanding of the intended goal even though they failed to replicate the result wished to be imitated. These task implicated that the infants knew the goal intended. Gergely, Bekkering, and Király (2002) figured that infants not only understand the intended goal but also the intentions of the person they were trying to imitate engaging in "rational imitation", as described by Tomasello, Carpenter and others It has long been claimed that newborn humans imitate bodily gestures and facial expressions as soon as their first few days of life. For example, in a study conducted at the Mailman Centre for Child Development at the University of Miami Medical School, 74 newborn babies (with a mean age of 36 hours) were tested to see if they were able to imitate a smile, a frown and a pout, and a wide-open mouth and eyes. An observer stood behind the experimenter (so he/she couldn't see what facial expressions were being made by the experimenter) and watched only the babies' facial expressions, recording their results. Just by looking only at the babies' faces, the observer was more often able to correctly guess what facial expression was being presented to the child by the experimenter. After the results were calculated, "the researchers concluded that...babies have an innate ability to compare an expression they see with their own sense of muscular feedback from making the movements to match that expression." However, the idea that imitation is an inborn ability has been recently challenged. A research group from the University of Queensland in Australia carried out the largest-ever longitudinal study of neonatal imitation in humans. One hundred and nine newborns were shown a variety of gestures including tongue protrusion, mouth opening, happy and sad facial expressions, at four time points between one week and 9 weeks of age. The results failed to reveal compelling evidence that newborns imitate: Infants were just as likely to produce matching and non-matching gestures in response to what they saw. At around eight months, infants will start to copy their child care providers' movements when playing pat-a-cake and peek-a-boo, as well as imitating familiar gestures, such as clapping hands together or patting a doll's back. At around 18 months, infants will then begin to imitate simple actions they observe adults doing, such as taking a toy phone out of a purse and saying "hello", pretending to sweep with a child-sized broom, as well as imitating using a toy hammer.Toddlers
At around 30–36 months, toddlers will start to imitate their parents by pretending to get ready for work and school and saying the last word(s) of what an adult just said. For example, toddlers may say "bowl" or "a bowl" after they hear someone say, "That's a bowl." They may also imitate the way family members communicate by using the same gestures and words. For example, a toddler will say, "Mommy bye-bye" after the father says, "Mommy went bye-bye." Toddlers love to imitate their parents and help when they can; imitation helps toddlers learn, and through their experiences lasting impressions are made. 12 to 36-month-olds learn by doing, not by watching, and so it is often recommended to be a good role model and caretaker by showing them simple tasks like putting on socks or holding a spoon. Duke developmental psychologist Carol Eckerman did a study on toddlers imitating toddlers and found that at the age of 2 children involve themselves in imitation play to communicate with one another. This can be seen within a culture or across different cultures. 3 common imitative patterns Eckerman found were reciprocal imitation, follow-the-leader and lead-follow. Kenneth Kaye's "apprenticeship" theory of imitation rejected assumptions that other authors had made about its development. His research showed that there is no one simple imitation skill with its own course of development. What changes is the type of behavior imitated. An important agenda for infancy is the progressive imitation of higher levels of use of signs, until the ultimate achievement of symbols. The principal role played by parents in this process is their provision of salient models within the facilitating frames that channel the infant's attention and organize his imitative efforts.Gender and age differences
Imitation and imitative behaviours do not manifest ubiquitously and evenly in all human individuals, some individuals rely more on imitated information than others. Although imitation is very useful when it comes to cognitive learning with toddlers, research has shown that there are some gender and age differences when it comes to imitation. Research done to judge imitation in toddlers 2–3 years old shows that when faced with certain conditions "2-year-olds displayed more motor imitation than 3-year-olds, and 3-year-olds displayed more verbal-reality imitation than 2-year-olds. Boys displayed more motor imitation than girls." No other research is more controversial pertaining gender differences in toddler imitation than renowned psychologist, Bandura's, bobo doll experiments. The goal of the experiment was to see what happens to toddlers when exposed to aggressive and non aggressive adults, would the toddlers imitate the behavior of the adults and if so, which gender is more likely to imitate the aggressive adult. In the beginning of the experiment Bandura had several predictions that actually came true. Children exposed to violent adults will imitate the actions of that adult when the adult is not present, boys who had observed an adult of the opposite sex act aggressively are less likely to act violently than those who witnessed a male adult act violently. In fact 'boys who observed an adult male behaving violently were more influenced than those who had observed a female model behavior aggressively'. One fascinating observation was that while boys are likely to imitate physical acts of violence, girls are likely to imitate verbal acts of violence.Negative imitation
Imitation plays a major role on how a toddler interprets the world. Much of a child's understanding is derived from imitation, due to a lack of verbal skill imitation in toddlers for communication. It is what connects them to the communicating world, as they continue to grow they begin to learn more. This may mean that it is crucial for parents to be cautious as to how they act and behave around their toddlers. Imitation is the toddlers way of confirming and dis-conforming socially acceptable actions in society. Actions like washing dishes, cleaning up the house and doing chores are actions you want your toddlers to imitate. Imitating negative things is something that is never beyond young toddlers. If they are exposed to cursing and violence, it is going to be what the child views as the norm of their world, since imitation is the 'mental activity that helps to formulate the conceptions of the world for toddlers' Hay et al. (1991). So it is important for parents to be careful what they say or do in front of their children.Autism
Children with autism exhibit significant impairment in imitation skills. Imitation deficits have been reported on a variety of tasks including symbolic and nonsymbolic body movements, symbolic and functional object use, vocalizations, and facial expressions. In contrast, typically-developing children can copy a broad range of novel (as well as familiar) rules from a very early age. Problems with imitation discriminate children with autism from those with other developmental disorders as early as age 2 and continue into adulthood. However, recent research suggests that people affected with forms ofAutomatic imitation
The automatic imitation comes very fast when a stimulus is given to replicate. The imitation can match the commands with the visual stimulus (compatible) or it cannot match the commands with the visual stimulus (incompatible). For example: ' Simon Says', a game played with children where they are told to follow the commands given by the adult. In this game, the adult gives the commands and shows the actions; the commands given can either match the action to be done or it will not match the action. The children who imitate the adult who has given the command with the correct action will stay in the game. The children who imitate the command with the wrong action will go out of the game, and this is where the child's automatic imitation comes into play. Psychologically, the visual stimulus being looked upon by the child is being imitated faster than the imitation of the command. In addition, the response times were faster in compatible scenarios than in incompatible scenarios. Children are surrounded by many different people, day by day. Their parents make a big impact on them, and usually what the children do is what they have seen their parent do. In this article they found that a child, simply watching its mother sweep the floor, right after soon picks up on it and starts to imitate the mother by sweeping the floor. By the children imitating, they are really teaching themselves how to do things without instruction from the parent or guardian. Toddlers love to play the game of house. They picked up on this game of house by television, school or at home; they play the game how they see it. The kids imitate their parents or anybody in their family. In the article it says it is so easy for them to pick up on the things they see on an everyday basis.Over-imitation
Over-imitation is "the tendency of young children to copy all of an adult model's actions, even components that are irrelevant for the task at hand." According to this human and cross-cultural phenomenon, a child has a strong tendency to automatically encode the deliberate action of an adult as causally meaningful even when the child observes evidence that proves that its performance is unnecessary. It is suggested that over-imitation "may be critical to the transmission of human culture." Experiments done by Lyons et al (2007) has shown that when there are obvious pedagogical cues, children tend to imitate step by step, including many unnecessary steps; without pedagogical cues, children will simply skip those useless steps. However, another study suggests that children don't just "blindly follow the crowd" since they can also be just as discriminating as adults in choosing whether an unnecessary action should be copied or not. They may imitate additional but unnecessary steps to a novel process if the adult demonstrations are all the same. However, in cases where one out of four adults showed a better technique, only 40% actually copied the extra step, as described by Evans, Carpenter and others. Children’s imitation is selective, also known as “selective imitation”. Studies have shown that children tend to imitate older, competitive, and trustworthy individuals.Deferred imitation
Piaget coined the term ''deferred imitation'' and suggested that it arises out of the child's increasing ability to "form mental representations of behavior performed by others." Deferred imitation is also "the ability to reproduce a previously witnessed action or sequence of actions in the absence of current perceptual support for the action." Instead of copying what is currently occurring, individuals repeat the action or behavior later on. It appears that infants show an improving ability for deferred imitation as they get older, especially by 24 months. By 24 months, infants are able to imitate action sequences after a delay of up to three months, meaning that "they're able to generalize knowledge they have gained from one test environment to another and from one test object to another." A child's deferred imitation ability "to form mental representations of actions occurring in everyday life and their knowledge of communicative gestures" has also been linked to earlier productive language development. Between 9 (preverbal period) and 16 months (verbal period), deferred imitation performance on a standard actions-on-objects task was consistent in one longitudinal study testing participants' ability to complete a target action, with high achievers at 9 months remaining so at 16 months. Gestural development at 9 months was also linked to productive language at 16 months. Researchers now believe that early deferred imitation ability is indicative of early declarative memory, also considered a predictor of productive language development.See also
* Appropriation (sociology) * Articulation (sociology) * Associative Sequence Learning * Cognitive imitation * Copycat crime * Copycat suicide * Identification (psychology) * Mimicry * Royal Commission on Animal MagnetismReferences
Further reading
* * * * *External links
* M. Metzmacher, 1995. La transmission du chant chez le Pinson des arbres (''Fringilla c. coelebs'') : phase sensible et rôle des tuteurs chez les oiseaux captifs