HOME

TheInfoList



OR:

Fish are exposed to large oxygen fluctuations in their aquatic environment since the inherent properties of water can result in marked spatial and temporal differences in the concentration of oxygen (see oxygenation and
underwater An underwater environment is a environment of, and immersed in, liquid water in a natural or artificial feature (called a Water, body of water), such as an ocean, sea, lake, pond, reservoir, river, canal, or aquifer. Some characteristics of the ...
). Fish respond to hypoxia with varied behavioral, physiological, and cellular responses to maintain
homeostasis In biology, homeostasis (British English, British also homoeostasis; ) is the state of steady internal physics, physical and chemistry, chemical conditions maintained by organism, living systems. This is the condition of optimal functioning fo ...
and organism function in an oxygen-depleted environment. The biggest challenge fish face when exposed to low oxygen conditions is maintaining metabolic energy balance, as 95% of the oxygen consumed by fish is used for ATP production releasing the chemical energy of nutrients through the
mitochondrial A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used ...
electron transport chain An electron transport chain (ETC) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
. Therefore, hypoxia survival requires a coordinated response to secure more oxygen from the depleted environment and counteract the metabolic consequences of decreased ATP production at the mitochondria.


Hypoxia tolerance

A fish's hypoxia tolerance can be represented in different ways. A commonly used representation is the critical O2 tension (Pcrit), which is the lowest water O2 tension (PO2) at which a fish can maintain a stable O2 consumption rate (MO2). A fish with a lower Pcrit is therefore thought to be more hypoxia-tolerant than a fish with a higher Pcrit. But while Pcrit is often used to represent hypoxia tolerance, it more accurately represents the ability to take up environmental O2 at hypoxic PO2s and does not incorporate the significant contributions of anaerobic glycolysis and metabolic suppression to hypoxia tolerance (see below). Pcrit is nevertheless closely tied to a fish's hypoxia tolerance, in part because some fish prioritize their use of aerobic metabolism over anaerobic metabolism and metabolic suppression. It therefore remains a widely used hypoxia tolerance metric. A fish's hypoxia tolerance can also be represented as the amount of time it can spend at a particular hypoxic PO2 before it loses dorsal-ventral equilibrium (called time-to-LOE), or the PO2 at which it loses equilibrium when PO2 is decreased from normoxia to anoxia at some set rate (called PO2-of-LOE). A higher time-to-LOE value or a lower PO2-of-LOE value therefore imply enhanced hypoxia tolerances. In either case, LOE is a more holistic representation of overall hypoxia tolerance because it incorporates all contributors to hypoxia tolerance, including aerobic metabolism, anaerobic metabolism and metabolic suppression.


Oxygen sensing


Oxygen sensing structures

In mammals there are several structures that have been implicated as oxygen sensing structures; however, all of these structures are situated to detect aortic or internal hypoxia since mammals rarely run into environmental hypoxia. These structures include the type I cells of the carotid body, the neuroepithelial bodies of the lungs as well as some central and
peripheral A peripheral device, or simply peripheral, is an auxiliary hardware device that a computer uses to transfer information externally. A peripheral is a hardware component that is accessible to and controlled by a computer but is not a core compo ...
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s and
vascular smooth muscle Vascular smooth muscle is the type of smooth muscle that makes up most of the walls of blood vessels. Structure Vascular smooth muscle refers to the particular type of smooth muscle found within, and composing the majority of the wall of blood v ...
cells. In fish, the neuroepithelial cells (NEC) have been implicated as the major oxygen sensing cells. NEC have been found in all teleost fish studied to date, and are likely a highly conserved structure within many
taxa In biology, a taxon (back-formation from ''taxonomy''; : taxa) is a group of one or more populations of an organism or organisms seen by taxonomists to form a unit. Although neither is required, a taxon is usually known by a particular name and ...
of fish. NEC are also found in all four gill arches within several different structures, such as along the filaments, at the ends of the gill rakers and throughout the lamellae. Two separate neural pathways have been identified within the
zebrafish The zebrafish (''Danio rerio'') is a species of freshwater ray-finned fish belonging to the family Danionidae of the order Cypriniformes. Native to South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio (an ...
gill arches both the motor and sensory nerve fibre pathways. Since neuroepithelial cells are distributed throughout the gills, they are often ideally situated to detect both
arterial An artery () is a blood vessel in humans and most other animals that takes oxygenated blood away from the heart in the systemic circulation to one or more parts of the body. Exceptions that carry deoxygenated blood are the pulmonary arteries in ...
as well as environmental oxygen.


Mechanisms of neurotransmitter release in neuroepithelial cells

Neuroepithelial cells (NEC) are thought to be
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
-like
chemoreceptor A chemoreceptor, also known as chemosensor, is a specialized sensory receptor which transduces a chemical substance ( endogenous or induced) to generate a biological signal. This signal may be in the form of an action potential, if the chemorece ...
cells because they rely on
membrane potential Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. It equals the interior potential minus the exterior potential. This is th ...
changes for the release of neurotransmitters and signal transmission onto nearby cells. Once NEC of the
zebrafish The zebrafish (''Danio rerio'') is a species of freshwater ray-finned fish belonging to the family Danionidae of the order Cypriniformes. Native to South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio (an ...
gills come in contact with either environmental or aortic hypoxia, an outward K+ "leak" channel is inhibited. It remains unclear how these K+ channels are inhibited by a shortage of oxygen because there are yet to be any known direct binding sites for "a lack of oxygen", only whole cell and ion channel responses to hypoxia. K+ "leak" channels are two-pore-domain
ion channels Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ...
that are open at the resting
membrane potential Membrane potential (also transmembrane potential or membrane voltage) is the difference in electric potential between the interior and the exterior of a biological cell. It equals the interior potential minus the exterior potential. This is th ...
of the cell and play a major role in setting the equilibrium resting membrane potential of the cell. Once this "leak" channel is closed, the K+ is no longer able to freely flow out of the cell, and the membrane potential of the NEC increases; the cell becomes depolarized. This
depolarization In biology, depolarization or hypopolarization is a change within a cell (biology), cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolar ...
causes voltage-gated Ca2+ channels to open, and for
extracellular This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
Ca2+ to flow down its concentration gradient into the cell causing the intracellular Ca2+ concentration to greatly increase. Once the Ca2+ is inside the cell, it binds to the vesicle release machinery and facilitates binding of the t-snare complex on the vesicle to the s-snare complex on the NEC cell membrane which initiates the release of neurotransmitters into the
synaptic cleft Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in neuromuscular junction, muscles or glands. Chemical synapses allow neurons to form biological neural ...
.


Signal transduction up to higher brain centres

If the post-synaptic cell is a sensory neuron, then an increased firing rate in that neuron will transmit the signal to the central nervous system for integration. Whereas, if the post-synaptic cell is a connective pillar cell or a
vascular smooth muscle Vascular smooth muscle is the type of smooth muscle that makes up most of the walls of blood vessels. Structure Vascular smooth muscle refers to the particular type of smooth muscle found within, and composing the majority of the wall of blood v ...
cell, then the
serotonin Serotonin (), also known as 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter with a wide range of functions in both the central nervous system (CNS) and also peripheral tissues. It is involved in mood, cognition, reward, learning, ...
will cause vasoconstriction and previously unused lamellae will be recruited through recruitment of more
capillary A capillary is a small blood vessel, from 5 to 10 micrometres in diameter, and is part of the microcirculation system. Capillaries are microvessels and the smallest blood vessels in the body. They are composed of only the tunica intima (the inn ...
beds, and the total surface area for gas exchange per lamella will be increased. In fish, the hypoxic signal is carried up to the brain for processing by the glossopharyngeal (cranial nerve IX) and
vagus The vagus nerve, also known as the tenth cranial nerve (CN X), plays a crucial role in the autonomic nervous system, which is responsible for regulating involuntary functions within the human body. This nerve carries both sensory and motor fiber ...
(cranial nerve X) nerves. The first branchial arch is innervated by the glossopharyngeal nerve (cranial nerve IX); however all four arches are innervated by the vagus nerve (cranial nerve X). Both the glossopharyngeal and vagus nerves carry sensory nerve fibres into the brain and central nervous system.


Locations of oxygen sensors

Through studies using mammalian model organisms, there are two main
hypotheses A hypothesis (: hypotheses) is a proposed explanation for a phenomenon. A scientific method, scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educ ...
for the location of oxygen sensing in chemoreceptor cells: the
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. Bi ...
hypothesis and the
mitochondrial A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used ...
hypothesis. The membrane hypothesis was proposed for the carotid body in mice, and it predicts that oxygen sensing is an ion balance initiated process. The mitochondrial hypothesis was also proposed for the carotid body of mice, but it relies on the levels of
oxidative phosphorylation Oxidative phosphorylation(UK , US : or electron transport-linked phosphorylation or terminal oxidation, is the metabolic pathway in which Cell (biology), cells use enzymes to Redox, oxidize nutrients, thereby releasing chemical energy in order ...
and/or
reactive oxygen species In chemistry and biology, reactive oxygen species (ROS) are highly Reactivity (chemistry), reactive chemicals formed from diatomic oxygen (), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (H2O2), superoxide (O2−), hydroxyl ...
(ROS) production as a cue for hypoxia. Specifically, the oxygen sensitive K+ currents are inhibited by H2O2 and
NADPH oxidase NADPH oxidase (nicotinamide adenine dinucleotide phosphate oxidase) is a membrane-bound enzyme complex that faces the extracellular space. It can be found in the plasma membrane as well as in the membranes of phagosomes used by neutrophil white ...
activation. There is evidence for both of these hypotheses depending on the species used for the study. For the neuroepithelial cells in the zebrafish gills, there is strong evidence supporting the "membrane hypothesis" due to their capacity to respond to hypoxia after removal of the contents of the cell. However, there is no evidence against multiple sites for oxygen sensing in organisms.


Acute responses to hypoxia

Many hypoxic environments never reach the level of anoxia and most fish are able to cope with this stress using different
physiological Physiology (; ) is the science, scientific study of function (biology), functions and mechanism (biology), mechanisms in a life, living system. As a branches of science, subdiscipline of biology, physiology focuses on how organisms, organ syst ...
and behavioural strategies. Fish that use air breathing organs (ABO) tend to live in environments with highly variable oxygen content and rely on aerial respiration during times when there is not enough oxygen to support water-breathing. Though all teleosts have some form of
swim bladder The swim bladder, gas bladder, fish maw, or air bladder is an internal gas-filled organ (anatomy), organ in bony fish that functions to modulate buoyancy, and thus allowing the fish to stay at desired water depth without having to maintain lift ...
, many of them are not capable of breathing air, and they rely on aquatic surface respiration as a supply of more oxygenated water at the surface of the water. However, many species of teleost fish are obligate water breathers and do not display either of these surface respiratory behaviours. Typically, acute hypoxia causes
hyperventilation Hyperventilation is irregular breathing that occurs when the rate or tidal volume of breathing eliminates more carbon dioxide than the body can produce. This leads to hypocapnia, a reduced concentration of carbon dioxide dissolved in the blo ...
,
bradycardia Bradycardia, also called bradyarrhythmia, is a resting heart rate under 60 beats per minute (BPM). While bradycardia can result from various pathological processes, it is commonly a physiological response to cardiovascular conditioning or due ...
and an elevation in gill
vascular resistance Vascular resistance is the resistance that must be overcome for blood to flow through the circulatory system. The resistance offered by the systemic circulation is known as the systemic vascular resistance or may sometimes be called by another ter ...
in teleosts. However, the benefit of these changes in
blood pressure Blood pressure (BP) is the pressure of Circulatory system, circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term ...
to oxygen uptake has not been supported in a recent study of the
rainbow trout The rainbow trout (''Oncorhynchus mykiss'') is a species of trout native to cold-water tributary, tributaries of the Pacific Ocean in North America and Asia. The steelhead (sometimes called steelhead trout) is an Fish migration#Classification, ...
. It is possible that the acute hypoxia response is simply a stress response, and the advantages found in early studies may only result after
acclimatization Acclimatization or acclimatisation ( also called acclimation or acclimatation) is the process in which an individual organism adjusts to a change in its environment (such as a change in altitude, temperature, humidity, photoperiod, or pH), ...
to the environment.


Behavioral responses

Hypoxia can modify normal behavior. Parental behaviour meant to provide oxygen to the eggs is often affected by hypoxia. For example, fanning behavior (swimming on the spot near the eggs to create a flow of water over them, and thus a constant supply of oxygen) is often increased when oxygen is less available. This has been documented in sticklebacks, gobies, and clownfishes, among others. Gobies may also increase the size of the openings in the nest they build, even though this may increase the risk of predation on the eggs. Rainbow cichlids often move their young fry closer to the water surface, where oxygen is more available, during hypoxic episodes. Behavioural adaptations meant to survive when oxygen is scarce include reduced activity levels, aquatic surface respiration, and air breathing.


Reduced activity levels

As oxygen levels decrease, fish may at first increase movements in an attempt to escape the hypoxic zone, but eventually they greatly reduce their activity levels, thus reducing their energetic (and therefore oxygen) demands. Atlantic herring show this exact pattern. Other examples of fishes that reduce their activity levels under hypoxia include the
common sole The common sole, Dover sole, or black sole (''Solea solea'') is a species of flatfish in the family Soleidae. It is one of the largest fish in the '' Solea'' genus. It lives on the sandy or muddy seabed of the northern Atlantic and the Mediter ...
, the guppy, the small-spotted catshark, and the viviparous eelpout. Some sharks that ram-ventilate their gills may understandably increase their swimming speeds under hypoxia, to bring more water to the gills.


Aquatic surface respiration

In response to decreasing
dissolved oxygen Oxygen saturation (symbol SO2) is a relative measure of the concentration of oxygen that is dissolved or carried in a given medium as a proportion of the maximal concentration that can be dissolved in that medium at the given temperature. It can ...
level in the environment, fish swim up to the surface of the water column and ventilate at the top layer of the water where it contains relatively higher level of dissolved oxygen, a behavior called aquatic surface respiration (ASR). Oxygen diffuses into water from air and therefore the top layer of water in contact with air contains more oxygen. This is true only in stagnant water; in running water all layers are mixed together and oxygen levels are the same throughout the water column. One environment where ASR often takes place is tidepools, particularly at night. Separation from the sea at low tide means that water is not renewed, fish crowding within the pool means that oxygen is quickly depleted, and absence of light at night means that there is no photosynthesis to replenish the oxygen. Examples of tidepool species that perform ASR include the tidepool sculpin, the
three-spined stickleback The three-spined stickleback (''Gasterosteus aculeatus'') is a fish native to most inland and coastal waters north of 30°N. It has long been a subject of scientific study for many reasons. It shows great morphological variation throughout its ra ...
, and the mummichog. But ASR is not limited to the intertidal environment. Most tropical and temperate fish species living in stagnant waters engage in ASR during hypoxia. One study looked at 26 species representing eight families of non-air breathing fishes from the North American great plains, and found that all but four of them performed ASR during hypoxia. Another study looked at 24 species of tropical fish common to the pet trade, from tetras to barbs to cichlids, and found that all of them performed ASR. An unusual situation in which ASR is performed is during winter, in lakes covered by ice, at the interface between water and ice or near air bubbles trapped underneath the ice. Some species may show morphological adaptations, such as a flat head and an upturned mouth, that allow them to perform ASR without breaking the water surface (which would make them more visible to aerial predators). One example is the mummichog, whose upturned mouth suggests surface feeding, but whose feeding habits are not particularly restricted to the surface. In the
tambaqui The tambaqui (''Colossoma macropomum'') is a large species of freshwater fish in the family Serrasalmidae. It is native to tropical South America, but kept in aquaculture and Introduced species, introduced elsewhere. It is also known by the names ...
, a South American species, exposure to hypoxia induces within hours the development of additional blood vessels inside the lower lip, enhancing its ability to take up oxygen during ASR. Swimming upside down may also help fishes perform ASR, as in some upside-down catfish. Some species may hold an air bubble within the mouth during ASR. This may assist buoyancy as well as increase the oxygen content of the water passing over the bubble on its way to the gills. Another way to reduce buoyancy costs is to perform ASR on rocks or plants that provide support near the water surface. ASR significantly affects survival of fish during severe hypoxia. In the shortfin molly for example, survival was approximately four times higher in individuals able to perform ASR as compared to fish not allowed to perform ASR during their exposure to extreme hypoxia. ASR may be performed more often when the need for oxygen is higher. In the sailfin molly, gestating females (this species is a livebearer) spend about 50% of their time in ASR as compared to only 15% in non-gestating females under the same low levels of oxygen.


Aerial respiration (air breathing)

Aerial respiration is the 'gulping' of air at the surface of water to directly extract oxygen from the atmosphere. Aerial respiration evolved in fish that were exposed to more frequent hypoxia; also, species that engage in aerial respiration tend to be more hypoxia tolerant than those which do not air-breath during the hypoxia. There are two main types of air breathing fish—facultative and non-facultative. Under normoxic conditions facultative fish can survive without having to breathe air from the surface of the water. However, non-facultative fish must respire at the surface even in normal dissolved oxygen levels because their
gill A gill () is a respiration organ, respiratory organ that many aquatic ecosystem, aquatic organisms use to extract dissolved oxygen from water and to excrete carbon dioxide. The gills of some species, such as hermit crabs, have adapted to allow r ...
s cannot extract enough oxygen from the water. Many air breathing freshwater teleosts use ABOs to effectively extract oxygen from air while maintaining functions of the gills. ABOs are modified gastrointestinal tracts,
gas bladder The swim bladder, gas bladder, fish maw, or air bladder is an internal gas-filled organ in bony fish that functions to modulate buoyancy, and thus allowing the fish to stay at desired water depth without having to maintain lift via swimming, ...
s, and labyrinth organs; they are highly vascularized and provide additional method of extracting oxygen from the air. Fish also use ABO for storing the retained oxygen.


Predation risk associated with ASR and aerial respiration

Both ASR and aerial respiration require fish to travel to the top of water column and this behaviour increases the predation risks by aerial predators or other
piscivores A piscivore () is a carnivorous animal that primarily eats fish. Fish were the diet of early tetrapod evolution (via water-bound amphibians during the Devonian period); insectivory came next; then in time, the more terrestrially adapted repti ...
inhabiting near the surface of the water. To cope with the increased predation risk upon surfacing, some fish perform ASR or aerial respiration in schools to 'dilute' the predation risk. When fish can visually detect the presence of their aerial predators, they simply refrain from surfacing, or prefer to surface in areas where they can be detected less easily (i.e. turbid, shaded areas).


Gill remodelling in hypoxia

Gill remodelling happens in only a few species of fish, and it involves the buildup or removal of an inter-lamellar cell mass (ILCM). As a response to hypoxia, some fish are able to remodel their gills to increase respiratory surface area, with some species such as goldfish doubling their lamellar surface areas in as little as 8 hours. The increased respiratory surface area comes as a trade-off with increased metabolic costs because the gills are a very important site for many important processes including respiratory
gas exchange Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a b ...
, acid-base regulation, nitrogen excretion,
osmoregulation Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration ...
, hormone regulation,
metabolism Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the co ...
, and environmental sensing. The crucian carp is one species able to remodel its gill filaments in response to hypoxia. Their inter-lamellar cells have high rates of mitotic activity which are influenced by both hypoxia and temperature. In cold (15 °C) water the crucian carp has more ILCM, but when the temperature is increased to 25 °C the ILCM is removed, just as it would be in hypoxic conditions. This same transition in
gill A gill () is a respiration organ, respiratory organ that many aquatic ecosystem, aquatic organisms use to extract dissolved oxygen from water and to excrete carbon dioxide. The gills of some species, such as hermit crabs, have adapted to allow r ...
morphology occurs in the
goldfish The goldfish (''Carassius auratus'') is a freshwater fish in the family Cyprinidae of the order Cypriniformes. It is commonly kept as a pet in indoor aquariums, and is one of the most popular aquarium fish. Goldfish released into the w ...
when the temperature was raised from 7.5 °C to 15 °C. This difference may be due to the temperature regimes that these fish are typically found in, or there could be an underlying protective mechanism to prevent a loss of ion balance in stressful temperatures. Temperature also affects the speed at which the gills can be remodelled: for example, at 20 °C in hypoxia, the crucian carp can completely remove its ILCM in 6 hours, whereas at 8 °C, the same process takes 3–7 days. The ILCM is likely removed by
apoptosis Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
, but it is possible that when the fish is faced with the double stress of hypoxia at high temperature, the lamellae may be lost by physical degradation. Covering the gill lamellae may protect species like the crucian carp from
parasites Parasitism is a close relationship between species, where one organism, the parasite, lives (at least some of the time) on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The en ...
and environmental toxins during normoxia by limiting their surface area for inward
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
while still maintaining oxygen transport due to an extremely high
hemoglobin Hemoglobin (haemoglobin, Hb or Hgb) is a protein containing iron that facilitates the transportation of oxygen in red blood cells. Almost all vertebrates contain hemoglobin, with the sole exception of the fish family Channichthyidae. Hemoglobin ...
oxygen binding
affinity Affinity may refer to: Commerce, finance and law * Affinity (law), kinship by marriage * Affinity analysis, a market research and business management technique * Affinity Credit Union, a Saskatchewan-based credit union * Affinity Equity Pa ...
. The naked carp, a closely related species native to the high-altitude Lake Qinghai, is also able to remodel their gills in response to hypoxic conditions. In response to oxygen levels 95% lower than normoxic conditions, apoptosis of ILCM increases lamellar surface area by up to 60% after just 24 hours. However, this comes at a significant osmoregulatory cost, reducing
sodium Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
and
chloride The term chloride refers to a compound or molecule that contains either a chlorine anion (), which is a negatively charged chlorine atom, or a non-charged chlorine atom covalently bonded to the rest of the molecule by a single bond (). The pr ...
levels in the
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
by over 10%. The morphological response to hypoxia by scaleless carp is the fastest respiratory surface remodelling reported in vertebrates thus far.


Oxygen uptake

Fish exhibit a wide range of tactics to counteract aquatic hypoxia, but when escape from the hypoxic stress is not possible, maintaining oxygen extraction and delivery becomes an essential component to survival. Except for the Antarctic ice fish that does not, most fish use
hemoglobin Hemoglobin (haemoglobin, Hb or Hgb) is a protein containing iron that facilitates the transportation of oxygen in red blood cells. Almost all vertebrates contain hemoglobin, with the sole exception of the fish family Channichthyidae. Hemoglobin ...
(Hb) within their red blood cells to bind chemically and deliver 95% of the oxygen extracted from the environment to the working tissues. Maintaining oxygen extraction and delivery to the tissues allows continued activity under hypoxic stress and is in part determined by modifications in two different blood parameters:
hematocrit The hematocrit () (Ht or HCT), also known by several other names, is the volume percentage (vol%) of red blood cells (RBCs) in blood, measured as part of a blood test. The measurement depends on the number and size of red blood cells. It is nor ...
and the binding properties of hemoglobin.


Hematocrit

In general, hematocrit is the number of red blood cells (RBC) in circulation and is highly variable among fish species. Active fish, like the blue marlin, tend to have higher hematocrits,Perry, SF, Esbaugh, A, Braun, M, and Gilmour, KM. 2009. Gas Transport and Gill Function in Water Breathing Fish. In Cardio-Respiratory Control in Vertebrates, (ed. Glass ML, Wood SC), pp. 5-35. Berlin: Springer-Verlag. whereas less active fish, such as the starry flounder exhibit lower hematocrits. Hematocrit may be increased in response to both short-term (acute) or long-term (chronic) hypoxia exposure and results in an increase in the total amount of oxygen the blood can carry, also known as the oxygen carrying capacity of the blood. Acute changes in hematocrit are the result of circulating stress hormones (see -
catecholamines A catecholamine (; abbreviated CA), most typically a 3,4-dihydroxyphenethylamine, is a monoamine neurotransmitter, an organic compound that has a catechol (benzene with two hydroxyl side groups next to each other) and a side-chain amine. ...
) activating receptors on the spleen that cause the release of RBCs into circulation. During chronic hypoxia exposure, the mechanism used to increase hematocrit is independent of the spleen and results from hormonal stimulation of the kidney by erythropoetin (EPO). Increasing hematocrit in response to erythropoietin is observed after approximately one week and is therefore likely under genetic control of hypoxia inducible factor hypoxia inducible factor (HIF). While increasing hematocrit means that the blood can carry a larger total amount of oxygen, a possible advantage during hypoxia, increasing the number of RBCs in the blood can also lead to certain disadvantages. First, A higher hematocrit results in more
viscous Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for example, syrup h ...
blood (especially in cold water) increasing the amount of energy the cardiac system requires to pump the blood through the system and secondly depending on the transit time of the blood across the
branchial arch Branchial arches or gill arches are a series of paired bony/ cartilaginous "loops" behind the throat ( pharyngeal cavity) of fish, which support the fish gills. As chordates, all vertebrate embryos develop pharyngeal arches, though the eve ...
and the diffusion rate of oxygen, an increased hematocrit may result in less efficient transfer of oxygen from the environment to the blood.


Changing the binding affinity of hemoglobin

An alternative mechanism to preserve O2 delivery in the face of low ambient oxygen is to increase the affinity of the blood. The oxygen content of the blood is related to PaO2 and is illustrated using an oxygen equilibrium curve (OEC). Fish hemoglobins, with the exception of the
agnatha Agnatha (; ) or jawless fish is a paraphyletic infraphylum of animals in the subphylum Vertebrata of the phylum Chordata, characterized by the lack of jaws. The group consists of both extant taxon, living (Cyclostomi, cyclostomes such as hagfish ...
ns, are tetramers that exhibit
cooperativity Cooperativity is a phenomenon displayed by systems involving identical or near-identical elements, which act dependently of each other, relative to a hypothetical standard non-interacting system in which the individual elements are acting indepen ...
of O2 binding and have sigmoidal OECs. The binding affinity of hemoglobin to oxygen is estimated using a measurement called P50 (the partial pressure of oxygen at which hemoglobin is 50% bound with oxygen) and can be extremely variable. If the hemoglobin has a weak affinity for oxygen, it is said to have a high P50 and therefore constrains the environment in which a fish can inhabit to those with relatively high environmental PO2. Conversely, fish hemoglobins with a low P50 bind strongly to oxygen and are then of obvious advantage when attempting to extract oxygen from hypoxic or variable PO2 environments. The use of high affinity (low P50) hemoglobins results in reduced ventillatory and therefore energetic requirements when facing hypoxic insult. The oxygen binding affinity of hemoglobin (Hb-O2) is regulated through a suite of allosteric modulators; the principal modulators used for controlling Hb-O2 affinity under hypoxic insult are: #Increasing RBC pH #Reducing inorganic phosphate interactions


pH and inorganic phosphates (Pi)

In
rainbow trout The rainbow trout (''Oncorhynchus mykiss'') is a species of trout native to cold-water tributary, tributaries of the Pacific Ocean in North America and Asia. The steelhead (sometimes called steelhead trout) is an Fish migration#Classification, ...
as well as a variety of other teleosts, increased RBC pH stems from the activation of B-andrenergic exchange protein (BNHE) on the RBC membrane via circulating catelcholamines. This process causes the internal pH of the RBC to increase through the outwards movement of and inwards movement of . The net consequence of alkalizing the RBC is an increase in Hb-O2 affinity via the
Bohr effect The Bohr effect is a phenomenon first described in 1904 by the Danish physiologist Christian Bohr. Hemoglobin's oxygen binding affinity (see oxygen–haemoglobin dissociation curve) is inversely related both to acidity and to the concentration of ...
. The net influx of ions and the compensatory activation of -ATPase to maintain ionic equilibrium within the RBC results in a steady decline in cellular ATP, also serving to increase Hb-O2 affinity. As a further result of inward movement, the
osmolarity Osmotic concentration, formerly known as osmolarity, is the measure of solute concentration, defined as the number of osmoles (Osm) of solute per litre (L) of solution (osmol/L or Osm/L). The osmolarity of a solution is usually expressed as Osm/ ...
of the RBC increases causing
osmotic Osmosis (, ) is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential (region o ...
influx of water and cell swelling. The dilution of the cell contents causes further spatial separation of hemoglobin from the inorganic phosphates and again serves to increase Hb-O2 affinity. Intertidal hypoxia-tolerant triplefin fish (Family Tripterygiidae) species seem to take advantage of intracellular acidosis and appears to "bypasse" the traditional
oxidative phosphorylation Oxidative phosphorylation(UK , US : or electron transport-linked phosphorylation or terminal oxidation, is the metabolic pathway in which Cell (biology), cells use enzymes to Redox, oxidize nutrients, thereby releasing chemical energy in order ...
and directly drives mitochondrial ATP synthesis using the cytosolic pool of protons that likely accumulates in hypoxia (via lactic acidosis and ATP hydrolysis).


Changing Hb- isoforms

Nearly all animals have more than one kind of Hb present in the RBC. Multiple Hb isoforms (see
isoforms A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene and are the result of genetic differences. While many perform the same or similar biological roles, some isoforms have uniqu ...
) are particularly common in
ectotherm An ectotherm (), more commonly referred to as a "cold-blooded animal", is an animal in which internal physiological sources of heat, such as blood, are of relatively small or of quite negligible importance in controlling body temperature.Dav ...
s, but especially in fish that are required to cope with both fluctuating temperature and oxygen availability. Hbs isolated from the
European eel The European eel (''Anguilla anguilla'') is a species of eel. Their life history was a mystery for thousands of years, and mating in the wild has not yet been observed. The five stages of their development were originally thought to be differe ...
can be separated into
anodic An anode usually is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, which is usually an electrode of the device through which conventional current leaves the devi ...
and
cathodic A cathode is the electrode from which a conventional current leaves a polarized electrical device such as a lead-acid battery. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. Conventional current ...
isoforms. The anodic isoforms have low oxygen affinities (high P50) and marked Bohr effects, while the cathodic lack significant pH effects and are therefore thought to confer hypoxia tolerance. Several species of African cichlids raised from early stage development under either hypoxic or normoxic conditions were contrasted in an attempt to compare Hb isoforms. They demonstrated there were Hb isoforms specific to the hypoxia-raised individuals.


Metabolic challenge

To deal with decreased ATP production through the electron transport chain, fish must activate anaerobic means of energy production (see
anaerobic metabolism Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain. In aerobic organisms undergoing ...
) while suppressing metabolic demands. The ability to decrease energy demand by metabolic suppression is essential to ensure hypoxic survival due to the limited efficiency of anaerobic ATP production.


Switch from aerobic to anaerobic metabolism

Aerobic respiration, in which oxygen is used as the terminal electron acceptor, is crucial to all water-breathing fish. When fish are deprived of oxygen, they require other ways to produce ATP. Thus, a switch from aerobic metabolism to anaerobic metabolism occurs at the onset of hypoxia.
Glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvic acid, pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The Thermodynamic free energy, free energy released in this process is used to form ...
and
substrate-level phosphorylation Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP supported by the energy released from another high-energy bond that leads to phosphorylation of ADP or GDP to ATP or GTP (note that the rea ...
are used as alternative pathways for ATP production. However, these pathways are much less efficient than aerobic metabolism. For example, when using the same substrate, the total yield of ATP in anaerobic metabolism is 15 times lower than in aerobic metabolism. This level of ATP production is not sufficient to maintain a high metabolic rate, therefore, the only survival strategy for fish is to alter their metabolic demands.


Metabolic suppression

Metabolic suppression is the regulated and reversible reduction of metabolic rate below
basal metabolic rate Basal metabolic rate (BMR) is the rate of energy expenditure per unit time by endothermic animals at rest.. In other words it is the energy required by body organs to perform normal It is reported in energy units per unit time ranging from watt ( ...
(called standard metabolic rate in ectothermic animals). This reduces the fish's rate of ATP use, which prolongs its survival time at severely hypoxic sub-Pcrit PO2s by reducing the rate at which the fish's finite anaerobic fuel stores (
glycogen Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria. It is the main storage form of glucose in the human body. Glycogen functions as one of three regularly used forms ...
) are used. Metabolic suppression also reduces the accumulation rate of deleterious anaerobic end-products ( lactate and protons), which delays their negative impact on the fish. The mechanisms that fish use to suppress metabolic rate occur at behavioral, physiological and biochemical levels. Behaviorally, metabolic rate can be lowered through reduced locomotion, feeding, courtship, and mating. Physiologically, metabolic rate can be lowered through reduced growth, digestion, gonad development, and ventilation efforts. And biochemically, metabolic rate can be further lowered below standard metabolic rate through reduced gluconeogenesis, protein synthesis and degradation rates, and ion pumping across cellular membranes. Reductions in these processes lower ATP use rates, but it remains unclear whether metabolic suppression is induced through an initial reduction in ATP use or ATP supply. The prevalence of metabolic suppression use among fish species has not been thoroughly explored. This is partly because the metabolic rates of hypoxia-exposed fish, including suppressed metabolic rates, can only be accurately measured using direct
calorimetry In chemistry and thermodynamics, calorimetry () is the science or act of measuring changes in '' state variables'' of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reac ...
, and this technique is seldom used for fish. The few studies that have used calorimetry reveal that some fish species employ metabolic suppression in hypoxia/anoxia (e.g., goldfish, tilapia, European eel) while others do not (e.g. rainbow trout, zebrafish). The species that employ metabolic suppression are more hypoxia-tolerant than the species that do not, which suggests that metabolic suppression enhances hypoxia tolerance. Consistent with this, differences in hypoxia tolerance among isolated threespine stickleback populations appear to result from differences in the use of metabolic suppression, with the more tolerant stickleback using metabolic suppression. Fish that are capable of hypoxia-induced metabolic suppression reduce their metabolic rates by 30% to 80% relative to standard metabolic rates. Because this is not a complete cessation of metabolic rate, metabolic suppression can only prolong hypoxic survival, not sustain it indefinitely. If the hypoxic exposure lasts sufficiently long, the fish will succumb to a depletion of its glycogen stores and/or the over-accumulation of deleterious anaerobic end-products. Furthermore, the severely limited energetic scope that comes with a metabolically suppressed state means that the fish is unable to complete critical tasks such a predator avoidance and reproduction. Perhaps for these reasons, goldfish prioritize their use of aerobic metabolism in most hypoxic environments, reserving metabolic suppression for the extreme case of anoxia.


Energy conservation

In addition to a reduction in the rate of protein synthesis, it appears that some species of hypoxia-tolerant fish conserve energy by employing Hochachka's ion channel arrest hypothesis. This hypothesis makes two predictions: # Hypoxia-tolerant animals naturally have low membrane permeabilities # Membrane permeability decreases even more during hypoxic conditions (ion channel arrest) The first prediction holds true. When membrane permeability to Na+ and K+ ions was compared between reptiles and mammals, reptile membranes were discovered to be five times less leaky. The second prediction has been more difficult to prove experimentally; however, indirect measures have shown a decrease in Na+/K+-ATPase activity in eel and trout
hepatocytes A hepatocyte is a cell of the main parenchymal tissue of the liver. Hepatocytes make up 80% of the liver's mass. These cells are involved in: * Protein synthesis * Protein storage * Transformation of carbohydrates * Synthesis of cholesterol, bile ...
during hypoxic conditions. Results seem to be tissue-specific, as crucian carp exposed to hypoxia do not undergo a reduction in Na+/K+ ATPase activity in their brain. Although evidence is limited, ion channel arrest enables organisms to maintain ion channel concentration gradients and membrane potentials without consuming large amounts of ATP.


Enhanced glycogen stores

The limiting factor for fish undergoing hypoxia is the availability of fermentable substrate for anaerobic metabolism; once substrate runs out, ATP production ceases. Endogenous
glycogen Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria. It is the main storage form of glucose in the human body. Glycogen functions as one of three regularly used forms ...
is present in tissue as a long term energy storage molecule. It can be converted into glucose and subsequently used as the starting material in glycolysis. A key adaptation to long-term survival during hypoxia is the ability of an organism to store large amounts of glycogen. Many hypoxia-tolerant species, such as carp, goldfish,
killifish A killifish is any of various oviparous (egg-laying) cyprinodontiform fish, including families Aplocheilidae, Pantanodontidae, Cyprinodontidae, Fundulidae, Nothobranchiidae, Profundulidae, Aphaniidae and Valenciidae. All together, there ar ...
, and
oscar Oscar, OSCAR, or The Oscar may refer to: People and fictional and mythical characters * Oscar (given name), including lists of people and fictional characters named Oscar, Óscar or Oskar * Oscar (footballer, born 1954), Brazilian footballer ...
contain the largest glycogen content (300-2000 μmol glocosyl units/g) in their tissue compared to hypoxia-sensitive fish, such as rainbow trout, which contain only 100 μmol glocosyl units/g. The more glycogen stored in a tissue indicates the capacity for that tissue to undergo glycolysis and produce ATP.


Tolerance of waste products

When anaerobic pathways are turned on, glycogen stores are depleted and accumulation of acidic waste products occurs. This is known as a
Pasteur effect The Pasteur effect describes how available oxygen inhibits ethanol fermentation, driving yeast to switch toward aerobic respiration for increased generation of the energy carrier adenosine triphosphate (ATP). More generally, in the medical liter ...
. A challenge hypoxia-tolerant fish face is how to produce ATP anaerobically without creating a significant Pasteur effect. Along with a reduction in metabolism, some fish have adapted traits to avoid accumulation of lactate. For example, the crucian carp, a highly hypoxia-tolerant fish, has evolved to survive months of anoxic waters. A key adaptation is the ability to convert lactate to ethanol in the muscle and excrete it out of their gills. Although this process is energetically costly it is crucial to their survival in hypoxic waters.


Gene expression changes

DNA microarray A DNA microarray (also commonly known as a DNA chip or biochip) is a collection of microscopic DNA spots attached to a solid surface. Scientists use DNA microarrays to measure the expression levels of large numbers of genes simultaneously or t ...
studies done on different fish species exposed to low-oxygen conditions have shown that at the genetic level fish respond to hypoxia by changing the expression of genes involved in oxygen transport, ATP production, and
protein synthesis Protein biosynthesis, or protein synthesis, is a core biological process, occurring inside cells, balancing the loss of cellular proteins (via degradation or export) through the production of new proteins. Proteins perform a number of critica ...
. In the liver of mudsuckers exposed to hypoxia there were changes in the expression of genes involved in
heme Heme (American English), or haem (Commonwealth English, both pronounced /Help:IPA/English, hi:m/ ), is a ring-shaped iron-containing molecule that commonly serves as a Ligand (biochemistry), ligand of various proteins, more notably as a Prostheti ...
metabolism such as
hemopexin Hemopexin (or haemopexin; Hpx; Hx), also known as beta-1B-glycoprotein, is a glycoprotein that in humans is encoded by the ''HPX'' gene and belongs to the hemopexin family of proteins. Hemopexin is the plasma protein with the highest binding aff ...
, heme oxygenase 1, and
ferritin Ferritin is a universal intracellular and extracellular protein that stores iron and releases it in a controlled fashion. The protein is produced by almost all living organisms, including archaea, bacteria, algae, higher plants, and animals. ...
. Changes in the sequestration and metabolism of iron may suggest hypoxia induced
erythropoiesis Erythropoiesis (from Greek ''erythro'', meaning ''red'' and ''poiesis'', meaning ''to make'') is the process which produces red blood cells (erythrocytes), which is the development from erythropoietic stem cell to mature red blood cell. It is s ...
and increased demand for hemoglobin synthesis, leading to increased oxygen uptake and transport. Increased expression of
myoglobin Myoglobin (symbol Mb or MB) is an iron- and oxygen-binding protein found in the cardiac and skeletal muscle, skeletal Muscle, muscle tissue of vertebrates in general and in almost all mammals. Myoglobin is distantly related to hemoglobin. Compar ...
, which is normally only found in muscle tissue, has also been observed after hypoxia exposure in the gills of zebrafish and in non-muscle tissue of the
common carp The common carp (''Cyprinus carpio''), also known as European carp, Eurasian carp, or simply carp, is a widespread freshwater fish of eutrophic waters in lakes and large rivers in Europe and Asia.Fishbase''Cyprinus carpio'' Linnaeus, 1758/ref>Ark ...
suggesting increased oxygen transport throughout fish tissues. Microarray studies done on fish species exposed to hypoxia typically show a metabolic switch, that is, a decrease in the expression of genes involved in aerobic metabolism and an increase in expression of genes involved in anaerobic metabolism. Zebrafish embryos exposed to hypoxia decreased expression of genes involved in the
citric acid cycle The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle)—is a series of chemical reaction, biochemical reactions that release the energy stored in nutrients through acetyl-Co ...
including,
succinate dehydrogenase Succinate dehydrogenase (SDH) or succinate-coenzyme Q reductase (SQR) or respiratory complex II is an enzyme complex, found in many bacterial cells and in the inner mitochondrial membrane of eukaryotes. It is the only enzyme that participates ...
,
malate dehydrogenase Malate dehydrogenase () (MDH) is an enzyme that reversibly catalyzes the oxidation of malate to oxaloacetate using the reduction of NAD+ to NADH. This reaction is part of many metabolic pathways, including the citric acid cycle. Other malate ...
, and
citrate synthase Citrate synthase ( E.C. 2.3.3.1 (previously 4.1.3.7)) is an enzyme that exists in nearly all living cells. It functions as a pace-making enzyme in the first step of the citric acid cycle (or Krebs cycle). Citrate synthase is located within euka ...
, and increased expression of genes involved in glycolysis such as
phosphoglycerate mutase :''This enzyme is not to be confused with Bisphosphoglycerate mutase which catalyzes the conversion of 1,3-bisphosphoglycerate to 2,3-bisphosphoglycerate.'' Phosphoglycerate mutase (PGM) is any enzyme that catalyzes step 8 of glycolysis ...
,
enolase Phosphopyruvate hydratase, usually known as enolase, is a metalloenzyme () that catalyses the conversion of 2-phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP), the ninth and penultimate step of glycolysis. The chemical reaction is: :2-ph ...
,
aldolase Fructose-bisphosphate aldolase (), often just aldolase, is an enzyme catalyzing a reversible reaction that splits the aldol, fructose 1,6-bisphosphate, into the triose phosphates dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphat ...
, and
lactate dehydrogenase Lactate dehydrogenase (LDH or LD) is an enzyme found in nearly all living cells. LDH catalyzes the conversion of pyruvic acid, pyruvate to lactic acid, lactate and back, as it converts NAD+ to NADH and back. A dehydrogenase is an enzyme that t ...
. A decrease in protein synthesis is an important response to hypoxia to decrease ATP demand for whole organism metabolic suppression. Decreases in the expression of genes involved in protein synthesis, such as
elongation factor-2 Eukaryotic elongation factor 2 is a protein that in humans is encoded by the ''EEF2'' gene. It is the archaeal and eukaryotic counterpart of bacterial EF-G. This gene encodes a member of the GTP-binding translation elongation factor family. Th ...
and several
ribosomal proteins A ribosomal protein (r-protein or rProtein) is any of the proteins that, in conjunction with rRNA, make up the ribosomal subunits involved in the cellular process of translation. ''E. coli'', other bacteria and Archaea have a 30S small subunit an ...
, have been shown in the muscle of the mudsucker and gills of adult zebrafish after hypoxia exposure . Research in mammals has implicated hypoxia inducible factor (HIF) as a key regulator of gene expression changes in response to hypoxia However, a direct link between fish HIFs and gene expression changes in response to hypoxia has yet to be found.
Phylogenetic analysis In biology, phylogenetics () is the study of the evolutionary history of life using observable characteristics of organisms (or genes), which is known as phylogenetic inference. It infers the relationship among organisms based on empirical data ...
of available fish,
tetrapod A tetrapod (; from Ancient Greek :wiktionary:τετρα-#Ancient Greek, τετρα- ''(tetra-)'' 'four' and :wiktionary:πούς#Ancient Greek, πούς ''(poús)'' 'foot') is any four-Limb (anatomy), limbed vertebrate animal of the clade Tetr ...
, and
bird Birds are a group of warm-blooded vertebrates constituting the class (biology), class Aves (), characterised by feathers, toothless beaked jaws, the Oviparity, laying of Eggshell, hard-shelled eggs, a high Metabolism, metabolic rate, a fou ...
HIF-α and -β sequences shows that the isoforms of both subunits present in mammals are also represented in fish Within fish, HIF sequences group close together and are distinct from tetrapod and bird sequences. As well, amino acid analysis of available fish HIF-α and -β sequences reveals that they contain all functional domains shown to be important for mammalian HIF function, including the basic helix-loop-helix (bHLH) domain, Per-ARNT-Sim (PAS) domain, and the oxygen-dependent degradation domain (ODD), which render the HIF-α subunit sensitive to oxygen levels. The evolutionary similarity between HIF sequences in fish, tetrapods and birds, as well as the conservation of important functional domains suggests that HIF function and regulation is similar between fish and mammalian species. There is also evidence of novel HIF mechanisms present in fish not found in mammals. In mammals, HIF-α protein is continuously synthesized and regulated post-translationally by changing oxygen conditions, but it has been shown in different fish species that HIF-α
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
levels are also responsive to hypoxia. In the hypoxia tolerant
grass carp The grass carp (''Ctenopharyngodon idella'') is a species of large herbivorous freshwater fish in the family Cyprinidae, native to the Pacific Far East, with a native range stretching from northern Vietnam to the Amur River on the Sino-Russian ...
, substantial increases in HIF-1α and HIF-3α mRNA were observed in all tissues after hypoxia exposure. Likewise, mRNA levels of HIF-1α and HIF-2α were hypoxia-responsive in the ovaries of the
Atlantic croaker The Atlantic croaker (''Micropogonias undulatus'') is a species of marine ray-finned fish belonging to the family Sciaenidae and is closely related to the black drum ('' Pogonias cromis''), the silver perch ('' Bairdiella chrysoura''), the spot ...
during both short and long term hypoxia.


See also

*
Algal bloom An algal bloom or algae bloom is a rapid increase or accumulation in the population of algae in fresh water or marine water systems. It is often recognized by the discoloration in the water from the algae's pigments. The term ''algae'' encompass ...
*
Eutrophication Eutrophication is a general term describing a process in which nutrients accumulate in a body of water, resulting in an increased growth of organisms that may deplete the oxygen in the water; ie. the process of too many plants growing on the s ...
*
Fish kill The term fish kill, known also as fish die-off, refers to a localized mass mortality event, mass die-off of fish populations which may also be associated with more generalized mortality of aquatic life.University of Florida. Gainesville, FL (200 ...
*
Hypoxia (environmental) Hypoxia (''hypo'': 'below', ''oxia'': 'oxygenated') refers to low oxygen conditions. Hypoxia is problematic for air-breathing organisms, yet it is essential for many anaerobic organisms. Hypoxia applies to many situations, but usually refers t ...


References

{{diversity of fish Aquatic ecology Chemical oceanography Environmental science Water quality indicators Oxygen