HOME

TheInfoList



OR:

In
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, two
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s from one
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. A notable use of homotopy is the definition of
homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about Loop (topology), loops in a Mathematic ...
and cohomotopy groups, important invariants in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces,
CW complex In mathematics, and specifically in topology, a CW complex (also cellular complex or cell complex) is a topological space that is built by gluing together topological balls (so-called ''cells'') of different dimensions in specific ways. It generali ...
es, or spectra.


Formal definition

Formally, a homotopy between two
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
H: X \times ,1\to Y from the product of the space ''X'' with the
unit interval In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analysi ...
, 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second
parameter A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
of ''H'' as time then ''H'' describes a ''continuous deformation'' of ''f'' into ''g'': at time 0 we have the function ''f'' and at time 1 we have the function ''g''. We can also think of the second parameter as a "slider control" that allows us to smoothly transition from ''f'' to ''g'' as the slider moves from 0 to 1, and vice versa. An alternative notation is to say that a homotopy between two continuous functions f, g: X \to Y is a family of continuous functions h_t: X \to Y for t \in ,1/math> such that h_0 = f and h_1 = g, and the map (x, t) \mapsto h_t(x) is continuous from X \times ,1/math> to Y. The two versions coincide by setting h_t(x) = H(x,t). It is not sufficient to require each map h_t(x) to be continuous. The animation that is looped above right provides an example of a homotopy between two
embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group (mathematics), group that is a subgroup. When some object X is said to be embedded in another object Y ...
s, ''f'' and ''g'', of the torus into . ''X'' is the torus, ''Y'' is , ''f'' is some continuous function from the torus to ''R''3 that takes the torus to the embedded surface-of-a-doughnut shape with which the animation starts; ''g'' is some continuous function that takes the torus to the embedded surface-of-a-coffee-mug shape. The animation shows the image of ''h''''t''(X) as a function of the parameter ''t'', where ''t'' varies with time from 0 to 1 over each cycle of the animation loop. It pauses, then shows the image as ''t'' varies back from 1 to 0, pauses, and repeats this cycle.


Properties

Continuous functions ''f'' and ''g'' are said to be homotopic if and only if there is a homotopy ''H'' taking ''f'' to ''g'' as described above. Being homotopic is an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
on the set of all continuous functions from ''X'' to ''Y''. This homotopy relation is compatible with
function composition In mathematics, the composition operator \circ takes two function (mathematics), functions, f and g, and returns a new function h(x) := (g \circ f) (x) = g(f(x)). Thus, the function is function application, applied after applying to . (g \c ...
in the following sense: if are homotopic, and are homotopic, then their compositions and are also homotopic.


Examples

* If f, g: \R \to \R^2 are given by f(x) := \left(x, x^3\right) and g(x) = \left(x, e^x\right), then the map H: \mathbb \times
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
\to \mathbb^2 given by H(x, t) = \left(x, (1 - t)x^3 + te^x\right) is a homotopy between them. * More generally, if C \subseteq \mathbb^n is a
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
subset of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
and f, g:
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
\to C are paths with the same endpoints, then there is a linear homotopy (or straight-line homotopy) given by *: \begin H:
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
\times
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
&\longrightarrow C \\ (s, t) &\longmapsto (1 - t)f(s) + tg(s). \end * Let \operatorname_:B^n\to B^n be the
identity function Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
on the unit ''n''- disk; i.e. the set B^n := \left\. Let c_: B^n \to B^n be the
constant function In mathematics, a constant function is a function whose (output) value is the same for every input value. Basic properties As a real-valued function of a real-valued argument, a constant function has the general form or just For example, ...
c_\vec(x) := \vec which sends every point to the origin. Then the following is a homotopy between them: *: \begin H: B^n \times
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
&\longrightarrow B^n \\ (x, t) &\longmapsto (1 - t)x. \end


Homotopy equivalence

Given two topological spaces ''X'' and ''Y'', a homotopy equivalence between ''X'' and ''Y'' is a pair of continuous maps and , such that is homotopic to the
identity map Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
id''X'' and is homotopic to id''Y''. If such a pair exists, then ''X'' and ''Y'' are said to be homotopy equivalent, or of the same homotopy type. This relation of homotopy equivalence is often denoted \simeq. Intuitively, two spaces ''X'' and ''Y'' are homotopy equivalent if they can be transformed into one another by bending, shrinking and expanding operations. Spaces that are homotopy-equivalent to a point are called
contractible In mathematics, a topological space ''X'' is contractible if the identity map on ''X'' is null-homotopic, i.e. if it is homotopic to some constant map. Intuitively, a contractible space is one that can be continuously shrunk to a point within t ...
.


Homotopy equivalence vs. homeomorphism

A
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
is a special case of a homotopy equivalence, in which is equal to the identity map id''X'' (not only homotopic to it), and is equal to id''Y''. Therefore, if X and Y are homeomorphic then they are homotopy-equivalent, but the opposite is not true. Some examples: * A solid disk is homotopy-equivalent to a single point, since you can deform the disk along radial lines continuously to a single point. However, they are not homeomorphic, since there is no
bijection In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
between them (since one is an infinite set, while the other is finite). * The
Möbius strip In mathematics, a Möbius strip, Möbius band, or Möbius loop is a Surface (topology), surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Bened ...
and an untwisted (closed) strip are homotopy equivalent, since you can deform both strips continuously to a circle. But they are not homeomorphic.


Examples

* The first example of a homotopy equivalence is \mathbb^n with a point, denoted \mathbb^n \simeq \. The part that needs to be checked is the existence of a homotopy H: I \times \mathbb^n \to \mathbb^n between \operatorname_ and p_0, the projection of \mathbb^n onto the origin. This can be described as H(t,\cdot) = t\cdot p_0 + (1-t)\cdot\operatorname_. * There is a homotopy equivalence between S^1 (the 1-sphere) and \mathbb^2-\. ** More generally, \mathbb^n-\ \simeq S^. * Any fiber bundle \pi: E \to B with fibers F_b homotopy equivalent to a point has homotopy equivalent total and base spaces. This generalizes the previous two examples since \pi:\mathbb^n - \ \to S^ is a fiber bundle with fiber \mathbb_. * Every
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to eve ...
is a fiber bundle with a fiber homotopy equivalent to a point. * \mathbb^n - \mathbb^k \simeq S^ for any 0 \le k < n, by writing \mathbb^n - \mathbb^k as the total space of the fiber bundle \mathbb^k \times (\mathbb^-\)\to (\mathbb^-\), then applying the homotopy equivalences above. * If a subcomplex A of a
CW complex In mathematics, and specifically in topology, a CW complex (also cellular complex or cell complex) is a topological space that is built by gluing together topological balls (so-called ''cells'') of different dimensions in specific ways. It generali ...
X is contractible, then the quotient space X/A is homotopy equivalent to X. * A deformation retraction is a homotopy equivalence.


Null-homotopy

A function f is said to be null-homotopic if it is homotopic to a constant function. (The homotopy from f to a constant function is then sometimes called a null-homotopy.) For example, a map f from the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
S^1 to any space X is null-homotopic precisely when it can be continuously extended to a map from the
unit disk In mathematics, the open unit disk (or disc) around ''P'' (where ''P'' is a given point in the plane), is the set of points whose distance from ''P'' is less than 1: :D_1(P) = \.\, The closed unit disk around ''P'' is the set of points whose d ...
D^2 to X that agrees with f on the boundary. It follows from these definitions that a space X is contractible if and only if the identity map from X to itself—which is always a homotopy equivalence—is null-homotopic.


Invariance

Homotopy equivalence is important because in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
many concepts are homotopy invariant, that is, they respect the relation of homotopy equivalence. For example, if ''X'' and ''Y'' are homotopy equivalent spaces, then: * ''X'' is
path-connected In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties t ...
if and only if ''Y'' is. * ''X'' is
simply connected In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every Path (topology), path between two points can be continuously transformed into any other such path while preserving ...
if and only if ''Y'' is. * The (singular) homology and cohomology groups of ''X'' and ''Y'' are
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
. * If ''X'' and ''Y'' are path-connected, then the fundamental groups of ''X'' and ''Y'' are isomorphic, and so are the higher
homotopy group In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homo ...
s. (Without the path-connectedness assumption, one has Ï€1(''X'', ''x''0) isomorphic to Ï€1(''Y'', ''f''(''x''0)) where is a homotopy equivalence and An example of an algebraic invariant of topological spaces which is not homotopy-invariant is compactly supported homology (which is, roughly speaking, the homology of the compactification, and compactification is not homotopy-invariant).


Variants


Relative homotopy

In order to define the fundamental group, one needs the notion of homotopy relative to a subspace. These are homotopies which keep the elements of the subspace fixed. Formally: if ''f'' and ''g'' are continuous maps from ''X'' to ''Y'' and ''K'' is a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of ''X'', then we say that ''f'' and ''g'' are homotopic relative to ''K'' if there exists a homotopy between ''f'' and ''g'' such that for all and Also, if ''g'' is a retraction from ''X'' to ''K'' and ''f'' is the identity map, this is known as a strong deformation retract of ''X'' to ''K''. When ''K'' is a point, the term pointed homotopy is used.


Isotopy

When two given continuous functions ''f'' and ''g'' from the topological space ''X'' to the topological space ''Y'' are
embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group (mathematics), group that is a subgroup. When some object X is said to be embedded in another object Y ...
s, one can ask whether they can be connected 'through embeddings'. This gives rise to the concept of isotopy, which is a homotopy, ''H'', in the notation used before, such that for each fixed ''t'', ''H''(''x'', ''t'') gives an embedding. A related, but different, concept is that of ambient isotopy. Requiring that two embeddings be isotopic is a stronger requirement than that they be homotopic. For example, the map from the interval ��1, 1into the real numbers defined by ''f''(''x'') = −''x'' is ''not'' isotopic to the identity ''g''(''x'') = ''x''. Any homotopy from ''f'' to the identity would have to exchange the endpoints, which would mean that they would have to 'pass through' each other. Moreover, ''f'' has changed the orientation of the interval and ''g'' has not, which is impossible under an isotopy. However, the maps are homotopic; one homotopy from ''f'' to the identity is ''H'':  ��1, 1nbsp;×  , 1nbsp;→  ��1, 1given by ''H''(''x'', ''y'') = 2''yx'' âˆ’ ''x''. Two homeomorphisms (which are special cases of embeddings) of the unit ball which agree on the boundary can be shown to be isotopic using Alexander's trick. For this reason, the map of the
unit disc In mathematics, the open unit disk (or disc) around ''P'' (where ''P'' is a given point in the plane), is the set of points whose distance from ''P'' is less than 1: :D_1(P) = \.\, The closed unit disk around ''P'' is the set of points whose d ...
in \mathbb^2 defined by ''f''(''x'', ''y'') = (−''x'', −''y'') is isotopic to a 180-degree
rotation Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
around the origin, and so the identity map and ''f'' are isotopic because they can be connected by rotations. In
geometric topology In mathematics, geometric topology is the study of manifolds and Map (mathematics)#Maps as functions, maps between them, particularly embeddings of one manifold into another. History Geometric topology as an area distinct from algebraic topo ...
—for example in
knot theory In topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be und ...
—the idea of isotopy is used to construct equivalence relations. For example, when should two knots be considered the same? We take two knots, ''K''1 and ''K''2, in three-
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
al space. A knot is an
embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group (mathematics), group that is a subgroup. When some object X is said to be embedded in another object Y ...
of a one-dimensional space, the "loop of string" (or the circle), into this space, and this embedding gives a homeomorphism between the circle and its image in the embedding space. The intuitive idea behind the notion of knot equivalence is that one can ''deform'' one embedding to another through a path of embeddings: a continuous function starting at ''t'' = 0 giving the ''K''1 embedding, ending at ''t'' = 1 giving the ''K''2 embedding, with all intermediate values corresponding to embeddings. This corresponds to the definition of isotopy. An ambient isotopy, studied in this context, is an isotopy of the larger space, considered in light of its action on the embedded submanifold. Knots ''K''1 and ''K''2 are considered equivalent when there is an ambient isotopy which moves ''K''1 to ''K''2. This is the appropriate definition in the topological category. Similar language is used for the equivalent concept in contexts where one has a stronger notion of equivalence. For example, a path between two smooth embeddings is a smooth isotopy.


Timelike homotopy

On a
Lorentzian manifold In mathematical physics, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere non-degenerate bilinear form, nondegenerate. This is a generalization of a Riema ...
, certain curves are distinguished as
timelike In mathematical physics, the causal structure of a Lorentzian manifold describes the possible causal relationships between points in the manifold. Lorentzian manifolds can be classified according to the types of causal structures they admit (''ca ...
(representing something that only goes forwards, not backwards, in time, in every local frame). A timelike homotopy between two timelike curves is a homotopy such that the curve remains timelike during the continuous transformation from one curve to another. No closed timelike curve (CTC) on a Lorentzian manifold is timelike homotopic to a point (that is, null timelike homotopic); such a manifold is therefore said to be multiply connected by timelike curves. A manifold such as the 3-sphere can be
simply connected In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every Path (topology), path between two points can be continuously transformed into any other such path while preserving ...
(by any type of curve), and yet be timelike multiply connected.


Properties


Lifting and extension properties

If we have a homotopy and a cover and we are given a map such that (''h''0 is called a lift of ''h''0), then we can lift all ''H'' to a map such that The homotopy lifting property is used to characterize fibrations. Another useful property involving homotopy is the
homotopy extension property In mathematics, in the area of algebraic topology, the homotopy extension property indicates which homotopies defined on a subspace can be extended to a homotopy defined on a larger space. The homotopy extension property of cofibrations is du ...
, which characterizes the extension of a homotopy between two functions from a subset of some set to the set itself. It is useful when dealing with cofibrations.


Groups

Since the relation of two functions f, g\colon X\to Y being homotopic relative to a subspace is an equivalence relation, we can look at the
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
es of maps between a fixed ''X'' and ''Y''. If we fix X = ,1n, the unit interval , 1 crossed with itself ''n'' times, and we take its boundary \partial( ,1n) as a subspace, then the equivalence classes form a group, denoted \pi_n(Y,y_0), where y_0 is in the image of the subspace \partial( ,1n). We can define the action of one equivalence class on another, and so we get a group. These groups are called the
homotopy group In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homo ...
s. In the case n = 1, it is also called the fundamental group.


Homotopy category

The idea of homotopy can be turned into a formal category of
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
. The homotopy category is the category whose objects are topological spaces, and whose morphisms are homotopy equivalence classes of continuous maps. Two topological spaces ''X'' and ''Y'' are isomorphic in this category if and only if they are homotopy-equivalent. Then a
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
on the category of topological spaces is homotopy invariant if it can be expressed as a functor on the homotopy category. For example, homology groups are a ''functorial'' homotopy invariant: this means that if ''f'' and ''g'' from ''X'' to ''Y'' are homotopic, then the
group homomorphism In mathematics, given two groups, (''G'',∗) and (''H'', ·), a group homomorphism from (''G'',∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) whe ...
s induced by ''f'' and ''g'' on the level of
homology group In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of abelian grou ...
s are the same: H''n''(''f'') = H''n''(''g'') : H''n''(''X'') → H''n''(''Y'') for all ''n''. Likewise, if ''X'' and ''Y'' are in addition path connected, and the homotopy between ''f'' and ''g'' is pointed, then the group homomorphisms induced by ''f'' and ''g'' on the level of
homotopy group In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homo ...
s are also the same: π''n''(''f'') = π''n''(''g'') : π''n''(''X'') → π''n''(''Y'').


Applications

Based on the concept of the homotopy, computation methods for algebraic and differential equations have been developed. The methods for algebraic equations include the homotopy continuation method and the continuation method (see numerical continuation). The methods for differential equations include the homotopy analysis method. Homotopy theory can be used as a foundation for
homology theory In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of abelian grou ...
: one can represent a cohomology functor on a space ''X'' by mappings of ''X'' into an appropriate fixed space, up to homotopy equivalence. For example, for any abelian group ''G'', and any based CW-complex ''X'', the set ,K(G,n)/math> of based homotopy classes of based maps from ''X'' to the  Eilenberg–MacLane space K(G,n) is in natural bijection with the ''n''-th singular cohomology group H^n(X,G) of the space ''X''. One says that the omega-spectrum of Eilenberg-MacLane spaces are representing spaces for singular cohomology with coefficients in ''G''. Using this fact, homotopy classes between a CW complex and a multiply connected space can be calculated using cohomology as described by the Hopf–Whitney theorem. Recently, homotopy theory is used to develop deep learning based generative models like diffusion models and flow-based generative models. Perturbing the complex non-Gaussian states is a tough task. Using deep learning and homotopy, such complex states can be transformed to Gaussian state and mildly perturbed to get transformed back to perturbed complex states.


See also

* Fiber-homotopy equivalence (relative version of a homotopy equivalence) * Homeotopy * Homotopy type theory *
Mapping class group In mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space. Mo ...
* Poincaré conjecture * Regular homotopy


References


Sources

* * * * {{Authority control * Maps of manifolds Theory of continuous functions