Homogeneous Element
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, in particular
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, a graded ring is a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
such that the underlying
additive group An additive group is a group of which the group operation is to be thought of as ''addition'' in some sense. It is usually abelian, and typically written using the symbol + for its binary operation. This terminology is widely used with structu ...
is a
direct sum of abelian groups The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
R_i such that . The
index set In mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set may be ''indexed'' or ''labeled'' by means of the elements of a set , then is an index set. The indexing consists ...
is usually the set of nonnegative
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s or the set of integers, but can be any
monoid In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity ...
. The direct sum decomposition is usually referred to as gradation or grading. A graded module is defined similarly (see below for the precise definition). It generalizes
graded vector space In mathematics, a graded vector space is a vector space that has the extra structure of a ''grading'' or ''gradation'', which is a decomposition of the vector space into a direct sum of vector subspaces, generally indexed by the integers. For ...
s. A graded module that is also a graded ring is called a graded algebra. A graded ring could also be viewed as a graded -algebra. The
associativity In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a Validity (logic), valid rule of replaceme ...
is not important (in fact not used at all) in the definition of a graded ring; hence, the notion applies to
non-associative algebra A non-associative algebra (or distributive algebra) is an algebra over a field where the binary operation, binary multiplication operation is not assumed to be associative operation, associative. That is, an algebraic structure ''A'' is a non-ass ...
s as well; e.g., one can consider a
graded Lie algebra In mathematics, a graded Lie algebra is a Lie algebra endowed with a gradation which is compatible with the Lie bracket. In other words, a graded Lie algebra is a Lie algebra which is also a nonassociative graded algebra under the bracket operati ...
.


First properties

Generally, the index set of a graded ring is assumed to be the set of nonnegative integers, unless otherwise explicitly specified. This is the case in this article. A graded ring is a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
that is decomposed into a
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
: R = \bigoplus_^\infty R_n = R_0 \oplus R_1 \oplus R_2 \oplus \cdots of
additive group An additive group is a group of which the group operation is to be thought of as ''addition'' in some sense. It is usually abelian, and typically written using the symbol + for its binary operation. This terminology is widely used with structu ...
s, such that : R_mR_n \subseteq R_ for all nonnegative integers m and . A nonzero element of R_n is said to be ''homogeneous'' of ''degree'' . By definition of a direct sum, every nonzero element a of R can be uniquely written as a sum a=a_0+a_1+\cdots +a_n where each a_i is either 0 or homogeneous of degree . The nonzero a_i are the ''homogeneous components'' of . Some basic properties are: * R_0 is a
subring In mathematics, a subring of a ring is a subset of that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and that shares the same multiplicative identity as .In general, not all s ...
of ; in particular, the multiplicative identity 1 is a homogeneous element of degree zero. * For any n, R_n is a two-sided - module, and the direct sum decomposition is a direct sum of -modules. * R is an associative -algebra. An ideal I\subseteq R is ''homogeneous'', if for every , the homogeneous components of a also belong to . (Equivalently, if it is a graded submodule of ; see .) The
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
of a homogeneous ideal I with R_n is an -
submodule In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring. The concept of a ''module'' also generalizes the notion of an abelian group, since t ...
of R_n called the ''homogeneous part'' of degree n of . A homogeneous ideal is the direct sum of its homogeneous parts. If I is a two-sided homogeneous ideal in , then R/I is also a graded ring, decomposed as : R/I = \bigoplus_^\infty R_n/I_n, where I_n is the homogeneous part of degree n of .


Basic examples

* Any (non-graded) ring ''R'' can be given a gradation by letting , and R_i=0 for ''i'' ≠ 0. This is called the trivial gradation on ''R''. * The
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
R = k _1, \ldots, t_n/math> is graded by degree: it is a direct sum of R_i consisting of
homogeneous polynomial In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, x^5 + 2 x^3 y^2 + 9 x y^4 is a homogeneous polynomial of degree 5, in two variables ...
s of degree ''i''. * Let ''S'' be the set of all nonzero homogeneous elements in a graded
integral domain In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
''R''. Then the localization of ''R'' with respect to ''S'' is a \Z-graded ring. * If ''I'' is an ideal in a
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
''R'', then \bigoplus_^ I^n/I^ is a graded ring called the
associated graded ring Associated may refer to: *Associated, former name of Avon, Contra Costa County, California *Associated Hebrew Schools of Toronto, a school in Canada *Associated Newspapers, former name of DMG Media, a British publishing company See also *Associatio ...
of ''R'' along ''I''; geometrically, it is the
coordinate ring In algebraic geometry, an affine variety or affine algebraic variety is a certain kind of algebraic variety that can be described as a subset of an affine space. More formally, an affine algebraic set is the set of the common zeros over an algeb ...
of the
normal cone In algebraic geometry, the normal cone of a subscheme of a scheme is a scheme analogous to the normal bundle or tubular neighborhood in differential geometry. Definition The normal cone or C_ of an embedding , defined by some sheaf of ideals ''I ...
along the
subvariety Subvariety may refer to: * Subvariety (botany) * Subvariety (algebraic geometry) * Variety (universal algebra) In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satis ...
defined by ''I''. * Let ''X'' be a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
, ''H''''i''(''X''; ''R'') the ''i''th
cohomology group In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
with coefficients in a ring ''R''. Then ''H'' *(''X''; ''R''), the
cohomology ring In mathematics, specifically algebraic topology, the cohomology ring of a topological space ''X'' is a ring formed from the cohomology groups of ''X'' together with the cup product serving as the ring multiplication. Here 'cohomology' is usually un ...
of ''X'' with coefficients in ''R'', is a graded ring whose underlying
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
is \bigoplus_^\infty H^i(X; R) with the multiplicative structure given by the
cup product In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree p and q to form a composite cocycle of degree p+q. This defines an associative (and distributive) graded commutative product opera ...
.


Graded module

The corresponding idea in
module theory In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring. The concept of a ''module'' also generalizes the notion of an abelian group, since t ...
is that of a graded module, namely a left module ''M'' over a graded ring ''R'' such that : M = \bigoplus_M_i , and : R_iM_j \subseteq M_ for every and . Examples: * A
graded vector space In mathematics, a graded vector space is a vector space that has the extra structure of a ''grading'' or ''gradation'', which is a decomposition of the vector space into a direct sum of vector subspaces, generally indexed by the integers. For ...
is an example of a graded module over a field (with the field having trivial grading). * A graded ring is a graded module over itself. An ideal in a graded ring is homogeneous
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
it is a graded submodule. The annihilator of a graded module is a homogeneous ideal. * Given an ideal ''I'' in a commutative ring ''R'' and an ''R''-module ''M'', the direct sum \bigoplus_^ I^n M/I^ M is a graded module over the associated graded ring \bigoplus_0^ I^n/I^. A ''morphism'' f: N \to M of graded modules, called a graded morphism or ''graded homomorphism'' , is a
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
of the underlying modules that respects grading; i.e., . A graded submodule is a submodule that is a graded module in own right and such that the set-theoretic
inclusion Inclusion or Include may refer to: Sociology * Social inclusion, action taken to support people of different backgrounds sharing life together. ** Inclusion (disability rights), promotion of people with disabilities sharing various aspects of lif ...
is a morphism of graded modules. Explicitly, a graded module ''N'' is a graded submodule of ''M'' if and only if it is a submodule of ''M'' and satisfies . The kernel and the
image An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
of a morphism of graded modules are graded submodules. Remark: To give a graded morphism from a graded ring to another graded ring with the image lying in the center is the same as to give the structure of a graded algebra to the latter ring. Given a graded module M, the \ell-twist of M is a graded module defined by M(\ell)_n = M_ (cf.
Serre's twisting sheaf In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not funct ...
in
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
). Let ''M'' and ''N'' be graded modules. If f\colon M \to N is a morphism of modules, then ''f'' is said to have degree ''d'' if f(M_n) \subseteq N_. An
exterior derivative On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The re ...
of
differential form In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications ...
s in
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
is an example of such a morphism having degree 1.


Invariants of graded modules

Given a graded module ''M'' over a commutative graded ring ''R'', one can associate the
formal power series In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial su ...
: : P(M, t) = \sum \ell(M_n) t^n (assuming \ell(M_n) are finite.) It is called the Hilbert–Poincaré series of ''M''. A graded module is said to be finitely generated if the underlying module is finitely generated. The generators may be taken to be homogeneous (by replacing the generators by their homogeneous parts.) Suppose ''R'' is a
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
, ''k'' a field, and ''M'' a finitely generated graded module over it. Then the function n \mapsto \dim_k M_n is called the Hilbert function of ''M''. The function coincides with the integer-valued polynomial for large ''n'' called the Hilbert polynomial of ''M''.


Graded algebra

An
associative algebra In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a mult ...
''A'' over a ring ''R'' is a graded algebra if it is graded as a ring. In the usual case where the ring ''R'' is not graded (in particular if ''R'' is a field), it is given the trivial grading (every element of ''R'' is of degree 0). Thus, R\subseteq A_0 and the graded pieces A_i are ''R''-modules. In the case where the ring ''R'' is also a graded ring, then one requires that : R_iA_j \subseteq A_ In other words, we require ''A'' to be a graded left module over ''R''. Examples of graded algebras are common in mathematics: *
Polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
s. The homogeneous elements of degree ''n'' are exactly the homogeneous polynomials of degree ''n''. * The
tensor algebra In mathematics, the tensor algebra of a vector space ''V'', denoted ''T''(''V'') or ''T''(''V''), is the algebra over a field, algebra of tensors on ''V'' (of any rank) with multiplication being the tensor product. It is the free algebra on ''V'', ...
T^ V of a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
''V''. The homogeneous elements of degree ''n'' are the
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
s of order ''n'', . * The
exterior algebra In mathematics, the exterior algebra or Grassmann algebra of a vector space V is an associative algebra that contains V, which has a product, called exterior product or wedge product and denoted with \wedge, such that v\wedge v=0 for every vector ...
\textstyle\bigwedge\nolimits^ V and the
symmetric algebra In mathematics, the symmetric algebra (also denoted on a vector space over a field is a commutative algebra over that contains , and is, in some sense, minimal for this property. Here, "minimal" means that satisfies the following universal ...
S^ V are also graded algebras. * The
cohomology ring In mathematics, specifically algebraic topology, the cohomology ring of a topological space ''X'' is a ring formed from the cohomology groups of ''X'' together with the cup product serving as the ring multiplication. Here 'cohomology' is usually un ...
H^ in any
cohomology theory In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
is also graded, being the direct sum of the cohomology groups . Graded algebras are much used in
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theo ...
and
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
,
homological algebra Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...
, and
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
. One example is the close relationship between
homogeneous polynomial In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, x^5 + 2 x^3 y^2 + 9 x y^4 is a homogeneous polynomial of degree 5, in two variables ...
s and
projective varieties In algebraic geometry, a projective variety is an algebraic variety that is a closed subvariety of a projective space. That is, it is the zero-locus in \mathbb^n of some finite family of homogeneous polynomials that generate a prime ideal, the ...
(cf.
Homogeneous coordinate ring In algebraic geometry, the homogeneous coordinate ring is a certain commutative ring assigned to any projective variety. If ''V'' is an algebraic variety given as a subvariety of projective space of a given dimension ''N'', its homogeneous coordina ...
.)


''G''-graded rings and algebras

The above definitions have been generalized to rings graded using any
monoid In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity ...
''G'' as an index set. A ''G''-graded ring ''R'' is a ring with a direct sum decomposition : R = \bigoplus_R_i such that : R_i R_j \subseteq R_. Elements of ''R'' that lie inside R_i for some i \in G are said to be homogeneous of grade ''i''. The previously defined notion of "graded ring" now becomes the same thing as an \N-graded ring, where \N is the monoid of
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s under addition. The definitions for graded modules and algebras can also be extended this way replacing the indexing set \N with any monoid ''G''. Remarks: * If we do not require that the ring have an
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
,
semigroup In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily th ...
s may replace monoids. Examples: * A
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
naturally grades the corresponding
group ring In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the gi ...
; similarly,
monoid ring In abstract algebra, a monoid ring is a ring constructed from a ring and a monoid, just as a group ring is constructed from a ring and a group. Definition Let ''R'' be a ring and let ''G'' be a monoid. The monoid ring or monoid algebra of ''G'' o ...
s are graded by the corresponding monoid. * An (associative)
superalgebra In mathematics and theoretical physics, a superalgebra is a Z2-graded algebra. That is, it is an algebra over a commutative ring or field with a decomposition into "even" and "odd" pieces and a multiplication operator that respects the grading. T ...
is another term for a \Z_2-graded algebra. Examples include
Clifford algebra In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra with the additional structure of a distinguished subspace. As -algebras, they generalize the real number ...
s. Here the homogeneous elements are either of degree 0 (even) or 1 (odd).


Anticommutativity

Some graded rings (or algebras) are endowed with an
anticommutative In mathematics, anticommutativity is a specific property of some non-commutative mathematical operations. Swapping the position of two arguments of an antisymmetric operation yields a result which is the ''inverse'' of the result with unswapped ...
structure. This notion requires a
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
of the monoid of the gradation into the additive monoid of \Z/2\Z, the field with two elements. Specifically, a signed monoid consists of a pair (\Gamma, \varepsilon) where \Gamma is a monoid and \varepsilon \colon \Gamma \to\Z/2\Z is a homomorphism of additive monoids. An anticommutative \Gamma-graded ring is a ring ''A'' graded with respect to \Gamma such that: : xy=(-1)^yx , for all homogeneous elements ''x'' and ''y''.


Examples

* An
exterior algebra In mathematics, the exterior algebra or Grassmann algebra of a vector space V is an associative algebra that contains V, which has a product, called exterior product or wedge product and denoted with \wedge, such that v\wedge v=0 for every vector ...
is an example of an anticommutative algebra, graded with respect to the structure (\Z, \varepsilon) where \varepsilon \colon \Z \to\Z/2\Z is the quotient map. * A
supercommutative algebra In mathematics, a supercommutative (associative) algebra is a superalgebra (i.e. a Z2-graded algebra) such that for any two homogeneous elements ''x'', ''y'' we have :yx = (-1)^xy , where , ''x'', denotes the grade of the element and is 0 or 1 ...
(sometimes called a skew-commutative associative ring) is the same thing as an anticommutative (\Z, \varepsilon)-graded algebra, where \varepsilon is the
identity map Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
of the additive structure of .


Graded monoid

Intuitively, a graded
monoid In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity ...
is the subset of a graded ring, \bigoplus_R_n, generated by the R_n's, without using the additive part. That is, the set of elements of the graded monoid is \bigcup_R_n. Formally, a graded monoid is a monoid (M,\cdot), with a gradation function \phi:M\to\mathbb N_0 such that \phi(m\cdot m')=\phi(m)+\phi(m'). Note that the gradation of 1_M is necessarily 0. Some authors request furthermore that \phi(m)\ne 0 when ''m'' is not the identity. Assuming the gradations of non-identity elements are non-zero, the number of elements of gradation ''n'' is at most g^n where ''g'' is the
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
of a
generating set In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to ...
''G'' of the monoid. Therefore the number of elements of gradation ''n'' or less is at most n+1 (for g=1) or \frac else. Indeed, each such element is the product of at most ''n'' elements of ''G'', and only \frac such products exist. Similarly, the identity element can not be written as the product of two non-identity elements. That is, there is no unit
divisor In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisibl ...
in such a graded monoid.


Power series indexed by a graded monoid

These notions allow us to extend the notion of power series ring. Instead of the indexing family being \mathbb N, the indexing family could be any graded monoid, assuming that the number of elements of degree ''n'' is finite, for each integer ''n''. More formally, let (K,+_K,\times_K) be an arbitrary
semiring In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distribu ...
and (R,\cdot,\phi) a graded monoid. Then K\langle\langle R\rangle\rangle denotes the semiring of power series with coefficients in ''K'' indexed by ''R''. Its elements are functions from ''R'' to ''K''. The sum of two elements s,s'\in K\langle\langle R\rangle\rangle is defined pointwise, it is the function sending m\in R to s(m)+_Ks'(m), and the product is the function sending m\in R to the infinite sum \sum_s(p)\times_K s'(q). This sum is correctly defined (i.e., finite) because, for each ''m'', there are only a finite number of pairs such that .


Free monoid

In
formal language theory In logic, mathematics, computer science, and linguistics, a formal language is a set of string (computer science), strings whose symbols are taken from a set called "#Definition, alphabet". The alphabet of a formal language consists of symbol ...
, given an
alphabet An alphabet is a standard set of letter (alphabet), letters written to represent particular sounds in a spoken language. Specifically, letters largely correspond to phonemes as the smallest sound segments that can distinguish one word from a ...
''A'', the
free monoid In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences (or strings) of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero ...
of words over ''A'' can be considered as a graded monoid, where the gradation of a word is its length.


See also

*
Associated graded ring Associated may refer to: *Associated, former name of Avon, Contra Costa County, California *Associated Hebrew Schools of Toronto, a school in Canada *Associated Newspapers, former name of DMG Media, a British publishing company See also *Associatio ...
*
Differential graded algebra In mathematics – particularly in homological algebra, algebraic topology, and algebraic geometry – a differential graded algebra (or DGA, or DG algebra) is an algebraic structure often used to capture information about a topological or geo ...
* Filtered algebra, a generalization *
Graded (mathematics) In mathematics, the term "graded" has a number of meanings, mostly related: In abstract algebra, it refers to a family of concepts: * An algebraic structure X is said to be I-graded for an index set I if it has a gradation or grading, i.e. a dec ...
*
Graded category In mathematics, if \mathcal is a category, then a \mathcal-graded category is a category \mathcal together with a functor F\colon\mathcal \rightarrow \mathcal. Monoids and groups can be thought of as categories with a single object. A monoid-gr ...
*
Graded vector space In mathematics, a graded vector space is a vector space that has the extra structure of a ''grading'' or ''gradation'', which is a decomposition of the vector space into a direct sum of vector subspaces, generally indexed by the integers. For ...
*
Tensor algebra In mathematics, the tensor algebra of a vector space ''V'', denoted ''T''(''V'') or ''T''(''V''), is the algebra over a field, algebra of tensors on ''V'' (of any rank) with multiplication being the tensor product. It is the free algebra on ''V'', ...
*
Differential graded module Differential may refer to: Mathematics * Differential (mathematics) comprises multiple related meanings of the word, both in calculus and differential geometry, such as an infinitesimal change in the value of a function * Differential algebra * ...


Notes


Citations


References

* . * * * {{refend Algebras Ring theory