Hilbert Bundle
   HOME

TheInfoList



OR:

David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental ideas including
invariant theory Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descr ...
, the
calculus of variations The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in Function (mathematics), functions and functional (mathematics), functionals, to find maxima and minima of f ...
,
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theo ...
,
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
, the
foundations of geometry Foundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometry, non-Euclidean geometries. These are fundamental to the study and of hist ...
,
spectral theory In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operator (mathematics), operators in a variety of mathematical ...
of operators and its application to
integral equations In mathematical analysis, integral equations are equations in which an unknown Function (mathematics), function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: f(x_1,x_2,x_3 ...
,
mathematical physics Mathematical physics is the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the de ...
, and the
foundations of mathematics Foundations of mathematics are the mathematical logic, logical and mathematics, mathematical framework that allows the development of mathematics without generating consistency, self-contradictory theories, and to have reliable concepts of theo ...
(particularly
proof theory Proof theory is a major branchAccording to , proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. consists of four corresponding parts, with part D being about "Proof The ...
). He adopted and defended
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( ; ;  – 6 January 1918) was a mathematician who played a pivotal role in the creation of set theory, which has become a foundations of mathematics, fundamental theory in mathematics. Cantor establi ...
's set theory and
transfinite number In mathematics, transfinite numbers or infinite numbers are numbers that are " infinite" in the sense that they are larger than all finite numbers. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of i ...
s. In 1900, he presented a collection of problems that set a course for mathematical research of the 20th century. Hilbert and his students contributed to establishing rigor and developed important tools used in modern mathematical physics. He was a cofounder of proof theory and
mathematical logic Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic com ...
.


Life


Early life and education

Hilbert, the first of two children and only son of Otto, a county judge, and Maria Therese Hilbert (
née The birth name is the name of the person given upon their birth. The term may be applied to the surname, the given name or to the entire name. Where births are required to be officially registered, the entire name entered onto a births registe ...
Erdtmann), the daughter of a merchant, was born in the
Province of Prussia The Province of Prussia (; ; ; ) was a province of the Kingdom of Prussia from 1824 to 1878. The province was established in 1824 from the provinces of East Prussia and West Prussia, and was dissolved in 1878 when the merger was reversed. König ...
,
Kingdom of Prussia The Kingdom of Prussia (, ) was a German state that existed from 1701 to 1918.Marriott, J. A. R., and Charles Grant Robertson. ''The Evolution of Prussia, the Making of an Empire''. Rev. ed. Oxford: Clarendon Press, 1946. It played a signif ...
, either in
Königsberg Königsberg (; ; ; ; ; ; , ) is the historic Germany, German and Prussian name of the city now called Kaliningrad, Russia. The city was founded in 1255 on the site of the small Old Prussians, Old Prussian settlement ''Twangste'' by the Teuton ...
(according to Hilbert's own statement) or in Wehlau (known since 1946 as Znamensk) near Königsberg where his father worked at the time of his birth. His paternal grandfather was David Hilbert, a judge and ''
Geheimrat was the title of the highest advising officials at the imperial, royal, or princely courts of the Holy Roman Empire, who jointly formed the ''Geheimer Rat'' reporting to the ruler. The term remained in use during subsequent monarchic reigns in Ge ...
''. His mother Maria had an interest in philosophy, astronomy and
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s, while his father Otto taught him
Prussian virtues Prussian virtues ( German: ) are the virtues associated with the historical Kingdom of Prussia (1701–1918). They were derived from Prussia's militarism and the ethical code of the Prussian Army as well as from bourgeois values such as honesty a ...
. After his father became a city judge, the family moved to Königsberg. David's sister, Elise, was born when he was six. He began his schooling aged eight, two years later than the usual starting age. In late 1872, Hilbert entered the
Friedrichskolleg The Collegium Fridericianum (also known as the Friedrichskolleg, Friedrichskollegium, and Friedrichs-Kollegium) was a prestigious gymnasium in Königsberg, Prussia. Alumni were known as ''Friderizianer''.Gause, p. 716 History Postcard ca. 1930 ...
Gymnasium (''Collegium fridericianum'', the same school that
Immanuel Kant Immanuel Kant (born Emanuel Kant; 22 April 1724 – 12 February 1804) was a German Philosophy, philosopher and one of the central Age of Enlightenment, Enlightenment thinkers. Born in Königsberg, Kant's comprehensive and systematic works ...
had attended 140 years before); but, after an unhappy period, he transferred to (late 1879) and graduated from (early 1880) the more science-oriented Wilhelm Gymnasium. Upon graduation, in autumn 1880, Hilbert enrolled at the
University of Königsberg The University of Königsberg () was the university of Königsberg in Duchy of Prussia, which was a fief of Poland. It was founded in 1544 as the world's second Protestant Reformation, Protestant academy (after the University of Marburg) by Duke A ...
, the "Albertina". In early 1882,
Hermann Minkowski Hermann Minkowski (22 June 1864 – 12 January 1909) was a mathematician and professor at the University of Königsberg, the University of Zürich, and the University of Göttingen, described variously as German, Polish, Lithuanian-German, o ...
(two years younger than Hilbert and also a native of Königsberg but had gone to Berlin for three semesters), returned to Königsberg and entered the university. Hilbert developed a lifelong friendship with the shy, gifted Minkowski.


Career

In 1884,
Adolf Hurwitz Adolf Hurwitz (; 26 March 1859 – 18 November 1919) was a German mathematician who worked on algebra, mathematical analysis, analysis, geometry and number theory. Early life He was born in Hildesheim, then part of the Kingdom of Hanover, to a ...
arrived from Göttingen as an Extraordinarius (i.e., an associate professor). An intense and fruitful scientific exchange among the three began, and Minkowski and Hilbert especially would exercise a reciprocal influence over each other at various times in their scientific careers. Hilbert obtained his doctorate in 1885, with a dissertation, written under
Ferdinand von Lindemann Carl Louis Ferdinand von Lindemann (12 April 1852 – 6 March 1939) was a German mathematician, noted for his proof, published in 1882, that (pi) is a transcendental number, meaning it is not a root of any polynomial with rational coefficien ...
, titled ''Über invariante Eigenschaften spezieller binärer Formen, insbesondere der Kugelfunktionen'' ("On the invariant properties of special binary forms, in particular the spherical harmonic functions"). Hilbert remained at the University of Königsberg as a ''Privatdozent'' ( senior lecturer) from 1886 to 1895. In 1895, as a result of intervention on his behalf by
Felix Klein Felix Christian Klein (; ; 25 April 1849 – 22 June 1925) was a German mathematician and Mathematics education, mathematics educator, known for his work in group theory, complex analysis, non-Euclidean geometry, and the associations betwe ...
, he obtained the position of Professor of Mathematics at the
University of Göttingen The University of Göttingen, officially the Georg August University of Göttingen (, commonly referred to as Georgia Augusta), is a Public university, public research university in the city of Göttingen, Lower Saxony, Germany. Founded in 1734 ...
. During the Klein and Hilbert years, Göttingen became the preeminent institution in the mathematical world. He remained there for the rest of his life.


Göttingen school

Among Hilbert's students were
Hermann Weyl Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
,
chess Chess is a board game for two players. It is an abstract strategy game that involves Perfect information, no hidden information and no elements of game of chance, chance. It is played on a square chessboard, board consisting of 64 squares arran ...
champion
Emanuel Lasker Emanuel Lasker (; December 24, 1868 – January 11, 1941) was a German chess player, mathematician, and philosopher. He was the second World Chess Champion, holding the title for 27 years, from 1894 to 1921, the longest reign of any officially ...
,
Ernst Zermelo Ernst Friedrich Ferdinand Zermelo (; ; 27 July 187121 May 1953) was a German logician and mathematician, whose work has major implications for the foundations of mathematics. He is known for his role in developing Zermelo–Fraenkel set theory, Z ...
, and
Carl Gustav Hempel Carl Gustav "Peter" Hempel (; ; January 8, 1905 – November 9, 1997) was a German writer, philosopher, logician, and epistemologist. He was a major figure in Logical positivism, logical empiricism, a 20th-century movement in the philosophy ...
.
John von Neumann John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, in ...
was his assistant. At the
University of Göttingen The University of Göttingen, officially the Georg August University of Göttingen (, commonly referred to as Georgia Augusta), is a Public university, public research university in the city of Göttingen, Lower Saxony, Germany. Founded in 1734 ...
, Hilbert was surrounded by a social circle of some of the most important mathematicians of the 20th century, such as
Emmy Noether Amalie Emmy Noether (23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She also proved Noether's theorem, Noether's first and Noether's second theorem, second theorems, which ...
and
Alonzo Church Alonzo Church (June 14, 1903 – August 11, 1995) was an American computer scientist, mathematician, logician, and philosopher who made major contributions to mathematical logic and the foundations of theoretical computer science. He is bes ...
. Among his 69 Ph.D. students in Göttingen were many who later became famous mathematicians, including (with date of thesis):
Otto Blumenthal Ludwig Otto Blumenthal (20 July 1876 – 12 November 1944) was a German mathematician and professor at RWTH Aachen University. Biography He was born in Frankfurt, Hesse-Nassau. A student of David Hilbert, Blumenthal was an editor of ''Mathemati ...
(1898), Felix Bernstein (1901),
Hermann Weyl Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
(1908),
Richard Courant Richard Courant (January 8, 1888 – January 27, 1972) was a German-American mathematician. He is best known by the general public for the book '' What is Mathematics?'', co-written with Herbert Robbins. His research focused on the areas of real ...
(1910),
Erich Hecke Erich Hecke (; 20 September 1887 – 13 February 1947) was a German mathematician known for his work in number theory and the theory of modular forms. Biography Hecke was born in Buk, Province of Posen, German Empire (now Poznań, Poland). He ...
(1910),
Hugo Steinhaus Hugo Dyonizy Steinhaus ( , ; 14 January 1887 – 25 February 1972) was a Polish mathematician and educator. Steinhaus obtained his PhD under David Hilbert at Göttingen University in 1911 and later became a professor at the Jan Kazimierz Univers ...
(1911), and
Wilhelm Ackermann Wilhelm Friedrich Ackermann (; ; 29 March 1896 – 24 December 1962) was a German mathematician and logician best known for his work in mathematical logic and the Ackermann function, an important example in the theory of computation. Biograph ...
(1925). Between 1902 and 1939 Hilbert was editor of the ''
Mathematische Annalen ''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert, ...
'', the leading mathematical journal of the time. He was elected an International Member of the United States
National Academy of Sciences The National Academy of Sciences (NAS) is a United States nonprofit, NGO, non-governmental organization. NAS is part of the National Academies of Sciences, Engineering, and Medicine, along with the National Academy of Engineering (NAE) and the ...
in 1907.


Personal life

In 1892, Hilbert married Käthe Jerosch (1864–1945), who was the daughter of a Königsberg merchant, "an outspoken young lady with an independence of mind that matched ilbert's" While at Königsberg, they had their one child, Franz Hilbert (1893–1969). Franz suffered throughout his life from mental illness, and after he was admitted into a psychiatric clinic, Hilbert said, "From now on, I must consider myself as not having a son." His attitude toward Franz brought Käthe considerable sorrow. Hilbert considered the mathematician
Hermann Minkowski Hermann Minkowski (22 June 1864 – 12 January 1909) was a mathematician and professor at the University of Königsberg, the University of Zürich, and the University of Göttingen, described variously as German, Polish, Lithuanian-German, o ...
to be his "best and truest friend". Hilbert was baptized and raised a
Calvinist Reformed Christianity, also called Calvinism, is a major branch of Protestantism that began during the 16th-century Protestant Reformation. In the modern day, it is largely represented by the Continental Reformed Protestantism, Continenta ...
in the Prussian Evangelical Church.The Hilberts had, by this time, left the Calvinist Protestant church in which they had been baptized and married. – Reid 1996, p.91 He later left the Church and became an
agnostic Agnosticism is the view or belief that the existence of God, the divine, or the supernatural is either unknowable in principle or unknown in fact. (page 56 in 1967 edition) It can also mean an apathy towards such religious belief and refer to ...
. David Hilbert seemed to be agnostic and had nothing to do with theology proper or even religion. Constance Reid tells a story on the subject:
The Hilberts had by this time
round 1902 Round or rounds may refer to: Mathematics and science * Having no sharp corners, as an ellipse, circle, or sphere * Rounding, reducing the number of significant figures in a number * Round number, ending with one or more zeroes * Round (crypt ...
left the Reformed Protestant Church in which they had been baptized and married. It was told in Göttingen that when avid Hilbert's sonFranz had started to school he could not answer the question, "What religion are you?" (1970, p. 91)
In the 1927 Hamburg address, Hilbert asserted: "mathematics is pre-suppositionless science (die Mathematik ist eine voraussetzungslose Wissenschaft)" and "to found it I do not need a good God ( ihrer Begründung brauche ich weder den lieben Gott)" (1928, S. 85; van Heijenoort, 1967, p. 479). However, from Mathematische Probleme (1900) to Naturerkennen und Logik (1930) he placed his quasi-religious faith in the human spirit and in the power of pure thought with its beloved child– mathematics. He was deeply convinced that every mathematical problem could be solved by pure reason: in both mathematics and any part of natural science (through mathematics) there was "no ignorabimus" (Hilbert, 1900, S. 262; 1930, S. 963; Ewald, 1996, pp. 1102, 1165). That is why finding an inner absolute grounding for mathematics turned into Hilbert's life-work. He never gave up this position, and it is symbolic that his words "wir müssen wissen, wir werden wissen" ("we must know, we shall know") from his 1930 Königsberg address were engraved on his tombstone. Here, we meet a ghost of departed theology (to modify George Berkeley's words), for to absolutize human cognition means to identify it tacitly with a divine one. —
He also argued that mathematical truth was independent of the existence of God or other ''
a priori ('from the earlier') and ('from the later') are Latin phrases used in philosophy to distinguish types of knowledge, Justification (epistemology), justification, or argument by their reliance on experience. knowledge is independent from any ...
'' assumptions."Mathematics is a presuppositionless science. To found it I do not need God, as does Kronecker, or the assumption of a special faculty of our understanding attuned to the principle of mathematical induction, as does Poincaré, or the primal intuition of Brouwer, or, finally, as do Russell and Whitehead, axioms of infinity, reducibility, or completeness, which in fact are actual, contentual assumptions that cannot be compensated for by consistency proofs." David Hilbert, ''Die Grundlagen der Mathematik''
Hilbert's program, 22C:096, University of Iowa
When
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei ( , , ) or mononymously as Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a poly ...
was criticized for failing to stand up for his convictions on the
Heliocentric theory Heliocentrism (also known as the heliocentric model) is a superseded astronomical model in which the Earth and planets orbit around the Sun at the center of the universe. Historically, heliocentrism was opposed to geocentrism, which placed th ...
, Hilbert objected: "But alileowas not an idiot. Only an idiot could believe that scientific truth needs martyrdom; that may be necessary in religion, but scientific results prove themselves in due time."


Later years

Like
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
, Hilbert had closest contacts with the Berlin Group, whose leading founders had studied under Hilbert in Göttingen (
Kurt Grelling Kurt Grelling (2 March 1886 – September 1942) was a German logician and philosopher, member of the Berlin Circle. Life and work Kurt Grelling was born on 2 March 1886 in Berlin. His father, the Doctor of Jurisprudence Richard Grelling ...
,
Hans Reichenbach Hans Reichenbach (; ; September 26, 1891 – April 9, 1953) was a leading philosopher of science, educator, and proponent of logical empiricism. He was influential in the areas of science, education, and of logical empiricism. He founded the ''G ...
, and
Walter Dubislav Walter Dubislav (20 September 1895 – 17 September 1937) was a German logician and philosopher of science (''Wissenschaftstheoretiker''). Biography After studying mathematics and philosophy, Dubislav attained a doctorate in 1922 with "Contribut ...
). Around 1925, Hilbert developed
pernicious anemia Pernicious anemia is a disease where not enough red blood cells are produced due to a deficiency of Vitamin B12, vitamin B12. Those affected often have a gradual onset. The most common initial symptoms are Fatigue, feeling tired and weak. Other ...
, a then-untreatable vitamin deficiency of which the primary symptom is exhaustion; his assistant
Eugene Wigner Eugene Paul Wigner (, ; November 17, 1902 – January 1, 1995) was a Hungarian-American theoretical physicist who also contributed to mathematical physics. He received the Nobel Prize in Physics in 1963 "for his contributions to the theory of th ...
described him as subject to "enormous fatigue" and how he "seemed quite old", and that even after eventually being diagnosed and treated, he "was hardly a scientist after 1925, and certainly not a Hilbert". Hilbert was elected to the
American Philosophical Society The American Philosophical Society (APS) is an American scholarly organization and learned society founded in 1743 in Philadelphia that promotes knowledge in the humanities and natural sciences through research, professional meetings, publicat ...
in 1932. Hilbert lived to see the Nazis purge many of the prominent faculty members at
University of Göttingen The University of Göttingen, officially the Georg August University of Göttingen (, commonly referred to as Georgia Augusta), is a Public university, public research university in the city of Göttingen, Lower Saxony, Germany. Founded in 1734 ...
in 1933. Those forced out included
Hermann Weyl Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
(who had taken Hilbert's chair when he retired in 1930),
Emmy Noether Amalie Emmy Noether (23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She also proved Noether's theorem, Noether's first and Noether's second theorem, second theorems, which ...
, and
Edmund Landau Edmund Georg Hermann Landau (14 February 1877 – 19 February 1938) was a German mathematician who worked in the fields of number theory and complex analysis. Biography Edmund Landau was born to a Jewish family in Berlin. His father was Leopo ...
. One who had to leave Germany,
Paul Bernays Paul Isaac Bernays ( ; ; 17 October 1888 – 18 September 1977) was a Swiss mathematician who made significant contributions to mathematical logic, axiomatic set theory, and the philosophy of mathematics. He was an assistant and close collaborator ...
, had collaborated with Hilbert in mathematical logic, and co-authored with him the important book ''
Grundlagen der Mathematik ''Grundlagen der Mathematik'' (English: ''Foundations of Mathematics'') is a two-volume work by David Hilbert and Paul Bernays. Originally published in 1934 and 1939, it presents fundamental mathematical ideas and introduced second-order arithme ...
'' (which eventually appeared in two volumes, in 1934 and 1939). This was a sequel to the Hilbert– Ackermann book ''
Principles of Mathematical Logic ''Principles of Mathematical Logic'' is the 1950 American translation of the 1938 second edition of David Hilbert's and Wilhelm Ackermann's classic text ''Grundzüge der theoretischen Logik'', on elementary mathematical logic. The 1928 first edit ...
'' (1928). Hermann Weyl's successor was
Helmut Hasse Helmut Hasse (; 25 August 1898 – 26 December 1979) was a German mathematician working in algebraic number theory, known for fundamental contributions to class field theory, the application of ''p''-adic numbers to local class field theory and ...
. About a year later, Hilbert attended a banquet and was seated next to the new Minister of Education,
Bernhard Rust Bernhard Rust (30 September 1883 – 8 May 1945) was Minister of Science, Education and National Culture ('' Reichserziehungsminister'') in Nazi Germany. Claudia Koonz, ''The Nazi Conscience'', p 134 A combination of school administrator and ze ...
. Rust asked whether "the Mathematical Institute really suffered so much because of the departure of the
Jews Jews (, , ), or the Jewish people, are an ethnoreligious group and nation, originating from the Israelites of History of ancient Israel and Judah, ancient Israel and Judah. They also traditionally adhere to Judaism. Jewish ethnicity, rel ...
". Hilbert replied: "Suffered? It doesn't exist any longer, does it?"


Death

By the time Hilbert died in 1943, the Nazis had nearly completely restaffed the university, as many of the former faculty had either been Jewish or married to Jews. Hilbert's funeral was attended by fewer than a dozen people, only two of whom were fellow academics, among them
Arnold Sommerfeld Arnold Johannes Wilhelm Sommerfeld (; 5 December 1868 – 26 April 1951) was a German Theoretical physics, theoretical physicist who pioneered developments in Atomic physics, atomic and Quantum mechanics, quantum physics, and also educated and ...
, a theoretical physicist and also a native of Königsberg. News of his death only became known to the wider world several months after he died. The epitaph on his tombstone in Göttingen consists of the famous lines he spoke at the conclusion of his retirement address to the Society of German Scientists and Physicians on 8 September 1930. The words were given in response to the Latin maxim: "''
Ignoramus et ignorabimus The Latin maxim , meaning "we do not know and will not know", represents the idea that scientific knowledge is limited. It was popularized by Emil du Bois-Reymond, a German physiologist, in his 1872 address ("The Limits of Science"). Seven ...
''" or "We do not know and we shall not know": The day before Hilbert pronounced these phrases at the 1930 annual meeting of the Society of German Scientists and Physicians,
Kurt Gödel Kurt Friedrich Gödel ( ; ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel profoundly ...
—in a round table discussion during the Conference on Epistemology held jointly with the Society meetings—tentatively announced the first expression of his incompleteness theorem. "The Conference on Epistemology of the Exact Sciences ran for three days, from 5 to 7 September" (Dawson 1997:68). "It ... was held in conjunction with and just before the ninety-first annual meeting of the Society of German Scientists and Physicians ... and the sixth Assembly of German Physicists and Mathematicians.... Gödel's contributed talk took place on Saturday, 6 September
930 Year 930 ( CMXXX) was a common year starting on Friday of the Julian calendar. Events By place Europe * The Althing, the parliament of Iceland, is established at þingvellir ("Thing Fields"). Chieftains from various tribes gather for ...
from 3 until 3:20 in the afternoon, and on Sunday the meeting concluded with a round table discussion of the first day's addresses. During the latter event, without warning and almost offhandedly, Gödel quietly announced that "one can even give examples of propositions (and in fact of those of the type of Goldbach or
Fermat Pierre de Fermat (; ; 17 August 1601 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his d ...
) that, while contentually true, are unprovable in the formal system of classical mathematics 53 (Dawson:69) "... As it happened, Hilbert himself was present at Königsberg, though apparently not at the Conference on Epistemology. The day after the roundtable discussion he delivered the opening address before the Society of German Scientists and Physicians – his famous lecture ''Naturerkennen und Logik'' (Logic and the knowledge of nature), at the end of which he declared: 'For the mathematician there is no Ignorabimus, and, in my opinion, not at all for natural science either. ... The true reason why o-onehas succeeded in finding an unsolvable problem is, in my opinion, that there is ''no'' unsolvable problem. In contrast to the foolish Ignorabimus, our credo avers: We must know, We shall know 59"(Dawson:71). Gödel's paper was received on November 17, 1930 (cf Reid p. 197, van Heijenoort 1976:592) and published on 25 March 1931 (Dawson 1997:74). But Gödel had given a talk about it beforehand... "An abstract had been presented in October 1930 to the Vienna Academy of Sciences by Hans Hahn" (van Heijenoort:592); this abstract and the full paper both appear in van Heijenoort:583ff.
Gödel's incompleteness theorems Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the phi ...
show that even
elementary Elementary may refer to: Arts, entertainment, and media Music * ''Elementary'' (Cindy Morgan album), 2001 * ''Elementary'' (The End album), 2007 * ''Elementary'', a Melvin "Wah-Wah Watson" Ragin album, 1977 Other uses in arts, entertainment, an ...
axiomatic systems such as
Peano arithmetic In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nea ...
are either self-contradicting or contain logical propositions that are impossible to prove or disprove within that system.


Contributions to mathematics and physics


Solving Gordan's Problem

Hilbert's first work on invariant functions led him to the demonstration in 1888 of his famous ''finiteness theorem''. Twenty years earlier,
Paul Gordan Paul Albert Gordan (27 April 1837 – 21 December 1912) was a German mathematician known for work in invariant theory and for the Clebsch–Gordan coefficients and Gordan's lemma. He was called "the king of invariant theory". His most famous ...
had demonstrated the
theorem In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to esta ...
of the finiteness of generators for binary forms using a complex computational approach. Attempts to generalize his method to functions with more than two variables failed because of the enormous difficulty of the calculations involved. To solve what had become known in some circles as ''Gordan's Problem'', Hilbert realized that it was necessary to take a completely different path. As a result, he demonstrated ''
Hilbert's basis theorem In mathematics Hilbert's basis theorem asserts that every ideal (ring theory), ideal of a polynomial ring over a field (mathematics), field has a finite generating set of an ideal, generating set (a finite ''basis'' in Hilbert's terminology). In ...
'', showing the existence of a finite set of generators, for the invariants of quantics in any number of variables, but in an abstract form. That is, while demonstrating the existence of such a set, it was not a
constructive proof In mathematics, a constructive proof is a method of mathematical proof, proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also ...
—it did not display "an object"—but rather, it was an
existence proof In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existen ...
and relied on use of the
law of excluded middle In logic, the law of excluded middle or the principle of excluded middle states that for every proposition, either this proposition or its negation is true. It is one of the three laws of thought, along with the law of noncontradiction and t ...
in an infinite extension. Hilbert sent his results to the ''
Mathematische Annalen ''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert, ...
''. Gordan, the house expert on the theory of invariants for the ''Mathematische Annalen'', could not appreciate the revolutionary nature of Hilbert's theorem and rejected the article, criticizing the exposition because it was insufficiently comprehensive. His comment was:
Klein Klein may refer to: People *Klein (surname) *Klein (musician) Places * Klein (crater), a lunar feature *Klein, Montana, United States * Klein, Texas, United States * Klein (Ohm), a river of Hesse, Germany, tributary of the Ohm * Klein River, a r ...
, on the other hand, recognized the importance of the work, and guaranteed that it would be published without any alterations. Encouraged by Klein, Hilbert extended his method in a second article, providing estimations on the maximum degree of the minimum set of generators, and he sent it once more to the ''Annalen''. After having read the manuscript, Klein wrote to him, saying: Later, after the usefulness of Hilbert's method was universally recognized, Gordan himself would say: For all his successes, the nature of his proof created more trouble than Hilbert could have imagined. Although Kronecker had conceded, Hilbert would later respond to others' similar criticisms that "many different constructions are subsumed under one fundamental idea"—in other words (to quote Reid): "Through a proof of existence, Hilbert had been able to obtain a construction"; "the proof" (i.e. the symbols on the page) ''was'' "the object". Not all were convinced. While Kronecker would die soon afterwards, his constructivist philosophy would continue with the young
Brouwer Brouwer (also Brouwers and de Brouwer) is a Dutch and Flemish surname. The word ''brouwer'' means 'brewer'. Brouwer * Adriaen Brouwer (1605–1638), Flemish painter * Alexander Brouwer (b. 1989), Dutch beach volleyball player * Andries Brouwer ( ...
and his developing
intuitionist In the philosophy of mathematics, intuitionism, or neointuitionism (opposed to preintuitionism), is an approach where mathematics is considered to be purely the result of the constructive mental activity of humans rather than the discovery of ...
"school", much to Hilbert's torment in his later years. Indeed, Hilbert would lose his "gifted pupil"
Weyl Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
to intuitionism—"Hilbert was disturbed by his former student's fascination with the ideas of Brouwer, which aroused in Hilbert the memory of Kronecker". Brouwer the intuitionist in particular opposed the use of the Law of Excluded Middle over infinite sets (as Hilbert had used it). Hilbert responded:


Nullstellensatz

In the subject of
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
, a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
is called ''
algebraically closed In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . In other words, a field is algebraically closed if the fundamental theorem of algebra h ...
'' if and only if every polynomial over it has a root in it. Under this condition, Hilbert gave a criterion for when a collection of polynomials (p_\lambda)_ of n variables has a ''common'' root: This is the case if and only if there do not exist polynomials q_1, \ldots, q_k and indices \lambda_1, \ldots, \lambda_k such that :1 = \sum_^k p_(\vec x) q_j(\vec x). This result is known as the Hilbert root theorem, or "Hilberts Nullstellensatz" in German. He also proved that the correspondence between vanishing ideals and their vanishing sets is bijective between
affine varieties In algebraic geometry, an affine variety or affine algebraic variety is a certain kind of algebraic variety that can be described as a subset of an affine space. More formally, an affine algebraic set is the set of the common zeros over an algeb ...
and
radical ideal Radical (from Latin: ', root) may refer to: Politics and ideology Politics *Classical radicalism, the Radical Movement that began in late 18th century Britain and spread to continental Europe and Latin America in the 19th century *Radical politics ...
s in \C _1, \ldots, x_n/math>.


Curve

In 1890,
Giuseppe Peano Giuseppe Peano (; ; 27 August 1858 – 20 April 1932) was an Italian mathematician and glottologist. The author of over 200 books and papers, he was a founder of mathematical logic and set theory, to which he contributed much Mathematical notati ...
had published an article in the
Mathematische Annalen ''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert, ...
describing the historically first
space-filling curve In mathematical analysis, a space-filling curve is a curve whose Range of a function, range reaches every point in a higher dimensional region, typically the unit square (or more generally an ''n''-dimensional unit hypercube). Because Giuseppe Pea ...
. In response, Hilbert designed his own construction of such a curve, which is now called the ''Hilbert curve''. Approximations to this curve are constructed iteratively according to the replacement rules in the first picture of this section. The curve itself is then the pointwise limit.


Axiomatization of geometry

The text ''
Grundlagen der Geometrie Hilbert's axioms are a set of 20 assumptions proposed by David Hilbert in 1899 in his book '' Grundlagen der Geometrie'' (tr. ''The Foundations of Geometry'') as the foundation for a modern treatment of Euclidean geometry. Other well-known modern ...
'' (tr.: ''Foundations of Geometry'') published by Hilbert in 1899 proposes a formal set, called Hilbert's axioms, substituting for the traditional axioms of Euclid. They avoid weaknesses identified in those of
Euclid Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
, whose works at the time were still used textbook-fashion. It is difficult to specify the axioms used by Hilbert without referring to the publication history of the ''Grundlagen'' since Hilbert changed and modified them several times. The original monograph was quickly followed by a French translation, in which Hilbert added V.2, the Completeness Axiom. An English translation, authorized by Hilbert, was made by E.J. Townsend and copyrighted in 1902. This translation incorporated the changes made in the French translation and so is considered to be a translation of the 2nd edition. Hilbert continued to make changes in the text and several editions appeared in German. The 7th edition was the last to appear in Hilbert's lifetime. New editions followed the 7th, but the main text was essentially not revised. Hilbert's approach signaled the shift to the modern
axiomatic method In mathematics and logic, an axiomatic system is a set of formal statements (i.e. axioms) used to logically derive other statements such as lemmas or theorems. A proof within an axiom system is a sequence of deductive steps that establis ...
. In this, Hilbert was anticipated by
Moritz Pasch Moritz Pasch (8 November 1843, Breslau, Prussia (now Wrocław, Poland) – 20 September 1930, Bad Homburg, Germany) was a German mathematician of Jewish ancestry specializing in the foundations of geometry. He completed his Ph.D. at the Uni ...
's work from 1882. Axioms are not taken as self-evident truths. Geometry may treat ''things'', about which we have powerful intuitions, but it is not necessary to assign any explicit meaning to the undefined concepts. The elements, such as point, line,
plane Plane most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface * Plane (mathematics), generalizations of a geometrical plane Plane or planes may also refer to: Biology * Plane ...
, and others, could be substituted, as Hilbert is reported to have said to
Schoenflies Arthur Moritz Schoenflies (; 17 April 1853 – 27 May 1928), sometimes written as Schönflies, was a German mathematician, known for his contributions to the application of group theory to crystallography, and for work in topology. Schoenflies ...
and
Kötter Cotter, cottier, cottar, or is a term for a peasant farmer. Cotters occupied cottages and cultivated small land lots. A cottar or cottier is also a term for a tenant who was renting land from a farmer or landlord. England The word ''cotter ...
, by tables, chairs, glasses of beer and other such objects. It is their defined relationships that are discussed. Hilbert first enumerates the undefined concepts: point, line, plane, lying on (a relation between points and lines, points and planes, and lines and planes), betweenness, congruence of pairs of points (
line segment In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special c ...
s), and congruence of
angle In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R ...
s. The axioms unify both the
plane geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
and
solid geometry Solid geometry or stereometry is the geometry of Three-dimensional space, three-dimensional Euclidean space (3D space). A solid figure is the region (mathematics), region of 3D space bounded by a two-dimensional closed surface; for example, a ...
of Euclid in a single system.


23 problems

Hilbert put forth a highly influential list consisting of 23 unsolved problems at the
International Congress of Mathematicians The International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU). The Fields Medals, the IMU Abacus Medal (known before ...
in Paris in 1900. This is generally reckoned as the most successful and deeply considered compilation of open problems ever to be produced by an individual mathematician. After reworking the foundations of classical geometry, Hilbert could have extrapolated to the rest of mathematics. His approach differed from the later "foundationalist" Russell–Whitehead or "encyclopedist"
Nicolas Bourbaki Nicolas Bourbaki () is the collective pseudonym of a group of mathematicians, predominantly French alumni of the École normale supérieure (Paris), École normale supérieure (ENS). Founded in 1934–1935, the Bourbaki group originally intende ...
, and from his contemporary
Giuseppe Peano Giuseppe Peano (; ; 27 August 1858 – 20 April 1932) was an Italian mathematician and glottologist. The author of over 200 books and papers, he was a founder of mathematical logic and set theory, to which he contributed much Mathematical notati ...
. The mathematical community as a whole could engage in problems of which he had identified as crucial aspects of important areas of mathematics. The problem set was launched as a talk, "The Problems of Mathematics", presented during the course of the Second International Congress of Mathematicians, held in Paris. The introduction of the speech that Hilbert gave said: He presented fewer than half the problems at the Congress, which were published in the acts of the Congress. In a subsequent publication, he extended the panorama, and arrived at the formulation of the now-canonical 23 Problems of Hilbert (see also
Hilbert's twenty-fourth problem Hilbert's twenty-fourth problem is a mathematical problem that was not published as part of the list of 23 problems (known as Hilbert's problems) but was included in David Hilbert's original notes. The problem asks for a criterion of simplicity in ...
). The full text is important, since the exegesis of the questions still can be a matter of debate when it is asked how many have been solved. Some of these were solved within a short time. Others have been discussed throughout the 20th century, with a few now taken to be unsuitably open-ended to come to closure. Some continue to remain challenges. The following are the headers for Hilbert's 23 problems as they appeared in the 1902 translation in the
Bulletin of the American Mathematical Society The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society. Scope It publishes surveys on contemporary research topics, written at a level accessible to non-experts. ...
. : 1. Cantor's problem of the cardinal number of the continuum. : 2. The compatibility of the arithmetical axioms. : 3. The equality of the volumes of two tetrahedra of equal bases and equal altitudes. : 4. Problem of the straight line as the shortest distance between two points. : 5. Lie's concept of a continuous group of transformations without the assumption of the differentiability of the functions defining the group. : 6. Mathematical treatment of the axioms of physics. : 7. Irrationality and transcendence of certain numbers. : 8. Problems of prime numbers (The "Riemann Hypothesis"). : 9. Proof of the most general law of reciprocity in any number field. : 10. Determination of the solvability of a Diophantine equation. : 11. Quadratic forms with any algebraic numerical coefficients : 12. Extensions of Kronecker's theorem on Abelian fields to any algebraic realm of rationality : 13. Impossibility of the solution of the general equation of 7th degree by means of functions of only two arguments. : 14. Proof of the finiteness of certain complete systems of functions. : 15. Rigorous foundation of Schubert's enumerative calculus. : 16. Problem of the topology of algebraic curves and surfaces. : 17. Expression of definite forms by squares. : 18. Building up of space from congruent polyhedra. : 19. Are the solutions of regular problems in the calculus of variations always necessarily analytic? : 20. The general problem of boundary values (Boundary value problems in PDE's). : 21. Proof of the existence of linear differential equations having a prescribed monodromy group. : 22. Uniformization of analytic relations by means of automorphic functions. : 23. Further development of the methods of the calculus of variations.


Formalism

In an account that had become standard by the mid-century, Hilbert's problem set was also a kind of manifesto that opened the way for the development of the
formalist Formalism may refer to: * Legal formalism, legal positivist view that the substantive justice of a law is a question for the legislature rather than the judiciary * Formalism (linguistics) * Scientific formalism * A rough synonym to the Formal sys ...
school, one of three major schools of mathematics of the 20th century. According to the formalist, mathematics is manipulation of symbols according to agreed upon formal rules. It is therefore an autonomous activity of thought.


Program

In 1920, Hilbert proposed a research project in
metamathematics Metamathematics is the study of mathematics itself using mathematical methods. This study produces metatheory, metatheories, which are Mathematical theory, mathematical theories about other mathematical theories. Emphasis on metamathematics (and ...
that became known as Hilbert's program. He wanted mathematics to be formulated on a solid and complete logical foundation. He believed that in principle this could be done by showing that: # all of mathematics follows from a correctly chosen finite system of
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
s; and # that some such axiom system is provably consistent through some means such as the
epsilon calculus In logic, Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosophy of mathematics, philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered an ...
. He seems to have had both technical and philosophical reasons for formulating this proposal. It affirmed his dislike of what had become known as the
ignorabimus The Latin maxim , meaning "we do not know and will not know", represents the idea that scientific knowledge is limited. It was popularized by Emil du Bois-Reymond, a German physiologist, in his 1872 address ("The Limits of Science"). Seven ...
, still an active issue in his time in German thought, and traced back in that formulation to
Emil du Bois-Reymond Emil Heinrich du Bois-Reymond (7 November 1818 – 26 December 1896) was a German physiologist, the co-discoverer of nerve action potential, and the developer of experimental electrophysiology. His lectures on science and culture earned him grea ...
. This program is still recognizable in the most popular
philosophy of mathematics Philosophy of mathematics is the branch of philosophy that deals with the nature of mathematics and its relationship to other areas of philosophy, particularly epistemology and metaphysics. Central questions posed include whether or not mathem ...
, where it is usually called ''formalism''. For example, the
Bourbaki group Bourbaki(s) may refer to : Persons and science * Charles-Denis Bourbaki (1816–1897), French general, son of Constantin Denis Bourbaki * Colonel Constantin Denis Bourbaki (1787–1827), officer in the Greek War of Independence and serving in t ...
adopted a watered-down and selective version of it as adequate to the requirements of their twin projects of (a) writing encyclopedic foundational works, and (b) supporting the
axiomatic method In mathematics and logic, an axiomatic system is a set of formal statements (i.e. axioms) used to logically derive other statements such as lemmas or theorems. A proof within an axiom system is a sequence of deductive steps that establis ...
as a research tool. This approach has been successful and influential in relation with Hilbert's work in algebra and functional analysis, but has failed to engage in the same way with his interests in physics and logic. Hilbert wrote in 1919: Hilbert published his views on the foundations of mathematics in the 2-volume work,
Grundlagen der Mathematik ''Grundlagen der Mathematik'' (English: ''Foundations of Mathematics'') is a two-volume work by David Hilbert and Paul Bernays. Originally published in 1934 and 1939, it presents fundamental mathematical ideas and introduced second-order arithme ...
.


Gödel's work

Hilbert and the mathematicians who worked with him in his enterprise were committed to the project. His attempt to support axiomatized mathematics with definitive principles, which could banish theoretical uncertainties, ended in failure. Gödel demonstrated that any consistent formal system that is sufficiently powerful to express basic arithmetic cannot prove its own completeness using only its own axioms and rules of inference. In 1931, his
incompleteness theorem Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies ...
showed that Hilbert's grand plan was impossible as stated. The second point cannot in any reasonable way be combined with the first point, as long as the axiom system is genuinely
finitary In mathematics and logic, an operation is finitary if it has finite arity, i.e. if it has a finite number of input values. Similarly, an infinitary operation is one with an infinite number of input values. In standard mathematics, an operat ...
. Nevertheless, the subsequent achievements of proof theory at the very least ''clarified'' consistency as it relates to theories of central concern to mathematicians. Hilbert's work had started logic on this course of clarification; the need to understand Gödel's work then led to the development of
recursion theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since ex ...
and then
mathematical logic Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic com ...
as an autonomous discipline in the 1930s. The basis for later
theoretical computer science Theoretical computer science is a subfield of computer science and mathematics that focuses on the Abstraction, abstract and mathematical foundations of computation. It is difficult to circumscribe the theoretical areas precisely. The Associati ...
, in the work of
Alonzo Church Alonzo Church (June 14, 1903 – August 11, 1995) was an American computer scientist, mathematician, logician, and philosopher who made major contributions to mathematical logic and the foundations of theoretical computer science. He is bes ...
and
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher and theoretical biologist. He was highly influential in the development of theoretical computer ...
, also grew directly out of this "debate".


Functional analysis

Around 1909, Hilbert dedicated himself to the study of differential and
integral equation In mathematical analysis, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: f(x_1,x_2,x_3,\ldots,x_n ; u(x_1,x_2 ...
s; his work had direct consequences for important parts of modern functional analysis. In order to carry out these studies, Hilbert introduced the concept of an infinite dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, later called
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
. His work in this part of analysis provided the basis for important contributions to the mathematics of physics in the next two decades, though from an unanticipated direction. Later on,
Stefan Banach Stefan Banach ( ; 30 March 1892 – 31 August 1945) was a Polish mathematician who is generally considered one of the 20th century's most important and influential mathematicians. He was the founder of modern functional analysis, and an original ...
amplified the concept, defining
Banach spaces In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
. Hilbert spaces are an important class of objects in the area of
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics ...
, particularly of the
spectral theory In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operator (mathematics), operators in a variety of mathematical ...
of self-adjoint linear operators, that grew up around it during the 20th century.


Physics

Until 1912, Hilbert was almost exclusively a
pure mathematician Pure may refer to: Computing * Pure function * PureSystems, a family of computer systems introduced by IBM in 2012 * Pure Software, a company founded in 1991 by Reed Hastings to support the Purify tool * Pure-FTPd, FTP server software * Pure ...
. When planning a visit from Bonn, where he was immersed in studying physics, his fellow mathematician and friend
Hermann Minkowski Hermann Minkowski (22 June 1864 – 12 January 1909) was a mathematician and professor at the University of Königsberg, the University of Zürich, and the University of Göttingen, described variously as German, Polish, Lithuanian-German, o ...
joked he had to spend 10 days in quarantine before being able to visit Hilbert. In fact, Minkowski seems responsible for most of Hilbert's physics investigations prior to 1912, including their joint seminar on the subject in 1905. In 1912, three years after his friend's death, Hilbert turned his focus to the subject almost exclusively. He arranged to have a "physics tutor" for himself. He started studying kinetic gas theory and moved on to elementary
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes: * ''electromagnetic radiation'' consisting of photons, such as radio waves, microwaves, infr ...
theory and the molecular theory of matter. Even after the war started in 1914, he continued seminars and classes where the works of
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
and others were followed closely. By 1907, Einstein had framed the fundamentals of the theory of
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
, but then struggled for nearly 8 years to put the theory into its final form. By early summer 1915, Hilbert's interest in physics had focused on
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, and he invited Einstein to Göttingen to deliver a week of lectures on the subject. Einstein received an enthusiastic reception at Göttingen. Over the summer, Einstein learned that Hilbert was also working on the field equations and redoubled his own efforts. During November 1915, Einstein published several papers culminating in ''The Field Equations of Gravitation'' (see
Einstein field equations In the General relativity, general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of Matter#In general relativity and cosmology, matter within it. ...
).In time, associating the gravitational field equations with Hilbert's name became less and less common. A noticeable exception is P. Jordan (Schwerkraft und Weltall, Braunschweig, Vieweg, 1952), who called the equations of gravitation in the vacuum the Einstein–Hilbert equations. (''Leo Corry, David Hilbert and the Axiomatization of Physics'', p. 437) Nearly simultaneously, Hilbert published "The Foundations of Physics", an axiomatic derivation of the field equations (see
Einstein–Hilbert action The Einstein–Hilbert action in general relativity is the action that yields the Einstein field equations through the stationary-action principle. With the metric signature, the gravitational part of the action is given as :S = \int R \sqrt ...
). Hilbert fully credited Einstein as the originator of the theory and no public priority dispute concerning the field equations ever arose between the two men during their lives.Since 1971 there have been some spirited and scholarly discussions about which of the two men first presented the now accepted form of the field equations. "Hilbert freely admitted, and frequently stated in lectures, that the great idea was Einstein's: "Every boy in the streets of Gottingen understands more about four dimensional geometry than Einstein," he once remarked. "Yet, in spite of that, Einstein did the work and not the mathematicians." (Reid 1996, pp. 141–142, also Isaacson 2007:222 quoting Thorne p. 119). See more at priority. Additionally, Hilbert's work anticipated and assisted several advances in the
mathematical formulation of quantum mechanics The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, whic ...
. His work was a key aspect of
Hermann Weyl Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
and
John von Neumann John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, in ...
's work on the mathematical equivalence of
Werner Heisenberg Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II. He pub ...
's
matrix mechanics Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics. Its account of quantum ...
and
Erwin Schrödinger Erwin Rudolf Josef Alexander Schrödinger ( ; ; 12 August 1887 – 4 January 1961), sometimes written as or , was an Austrian-Irish theoretical physicist who developed fundamental results in quantum field theory, quantum theory. In particul ...
's
wave equation The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light ...
, and his namesake Hilbert space plays an important part in quantum theory. In 1926, von Neumann showed that, if quantum states were understood as vectors in Hilbert space, they would correspond with both Schrödinger's wave function theory and Heisenberg's matrices.In 1926, the year after the matrix mechanics formulation of quantum theory by
Max Born Max Born (; 11 December 1882 – 5 January 1970) was a German-British theoretical physicist who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics, and supervised the work of a ...
and
Werner Heisenberg Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II. He pub ...
, the mathematician
John von Neumann John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, in ...
became an assistant to Hilbert at Göttingen. When von Neumann left in 1932, von Neumann's book on the mathematical foundations of quantum mechanics, based on Hilbert's mathematics, was published under the title ''Mathematische Grundlagen der Quantenmechanik''. See: Norman Macrae (1999) ''John von Neumann: The Scientific Genius Who Pioneered the Modern Computer, Game Theory, Nuclear Deterrence, and Much More'' (reprinted by the American Mathematical Society) and Reid (1996).
Throughout this immersion in physics, Hilbert worked on putting rigor into the mathematics of physics. While highly dependent on higher mathematics, physicists tended to be "sloppy" with it. To a pure mathematician like Hilbert, this was both ugly and difficult to understand. As he began to understand physics and how physicists were using mathematics, he developed a coherent mathematical theory for what he found – most importantly in the area of
integral equations In mathematical analysis, integral equations are equations in which an unknown Function (mathematics), function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: f(x_1,x_2,x_3 ...
. When his colleague Richard Courant wrote the now classic ''
Methoden der mathematischen Physik ''Methoden der mathematischen Physik'' (translated into English with the title Methods of Mathematical Physics) is a 1924 book, in two volumes totalling around 1000 pages, published under the names of Richard Courant and David Hilbert. It was a co ...
'' (''Methods of Mathematical Physics'') including some of Hilbert's ideas, he added Hilbert's name as author even though Hilbert had not directly contributed to the writing. Hilbert said "Physics is too hard for physicists", implying that the necessary mathematics was generally beyond them; the Courant–Hilbert book made it easier for them.


Number theory

Hilbert unified the field of
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
with his 1897 treatise ''
Zahlbericht In mathematics, the ''Zahlbericht'' (number report) was a report on algebraic number theory by . History In 1893 the German Mathematical Society invited Hilbert and Minkowski to write reports on the theory of numbers. They agreed that Minkowski ...
'' (literally "report on numbers"). He also resolved a significant number-theory problem formulated by Waring in 1770. As with the finiteness theorem, he used an existence proof that shows there must be solutions for the problem rather than providing a mechanism to produce the answers. He then had little more to publish on the subject; but the emergence of
Hilbert modular form In mathematics, a Hilbert modular form is a generalization of modular forms to functions of two or more variables. It is a (complex) analytic function on the ''m''-fold product of upper half-planes \mathcal satisfying a certain kind of functional ...
s in the dissertation of a student means his name is further attached to a major area. He made a series of conjectures on
class field theory In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field. Hilbert is credit ...
. The concepts were highly influential, and his own contribution lives on in the names of the
Hilbert class field In algebraic number theory, the Hilbert class field ''E'' of a number field ''K'' is the Maximal abelian extension, maximal abelian unramified extension of ''K''. Its degree over ''K'' equals the class number of ''K'' and the Galois group of ''E'' ...
and of the
Hilbert symbol In mathematics, the Hilbert symbol or norm-residue symbol is a function (–, –) from ''K''× × ''K''× to the group of ''n''th roots of unity in a local field ''K'' such as the fields of real number, reals or p-adic numbers. It is related to rec ...
of
local class field theory In mathematics, local class field theory, introduced by Helmut Hasse, is the study of abelian extensions of local fields; here, "local field" means a field which is complete with respect to an absolute value or a discrete valuation with a finite re ...
. Results were mostly proved by 1930, after work by
Teiji Takagi Teiji Takagi (高木 貞治 ''Takagi Teiji'', April 21, 1875 – February 28, 1960) was a Japanese mathematician, best known for proving the Takagi existence theorem in class field theory. The Blancmange curve, the graph of a nowhere-differenti ...
.This work established Takagi as Japan's first mathematician of international stature. Hilbert did not work in the central areas of
analytic number theory In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dir ...
, but his name has become known for the
Hilbert–Pólya conjecture In mathematics, the Hilbert–Pólya conjecture states that the non-trivial Zero of a function, zeros of the Riemann zeta function correspond to eigenvalues of a self-adjoint operator. It is a possible approach to the Riemann hypothesis, by means o ...
, for reasons that are anecdotal.
Ernst Hellinger Ernst David Hellinger (September 30, 1883 – March 28, 1950) was a German mathematician and is primarily known for his works on statistics and probability. His works include Hellinger distance and Hellinger integral which were introduced by him ...
, a student of Hilbert, once told
André Weil André Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was one of the most influential mathematicians of the twentieth century. His influence is du ...
that Hilbert had announced in his seminar in the early 1900s that he expected the proof of the
Riemann Hypothesis In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in pure ...
would be a consequence of Fredholm's work on integral equations with a symmetric kernel.


Works

His collected works (''Gesammelte Abhandlungen'') have been published several times. The original versions of his papers contained "many technical errors of varying degree";, chap. 13. when the collection was first published, the errors were corrected and it was found that this could be done without major changes in the statements of the theorems, with one exception—a claimed proof of the
continuum hypothesis In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states: Or equivalently: In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this ...
. Rota G.-C. (1997),
Ten lessons I wish I had been taught
, ''
Notices of the AMS ''Notices of the American Mathematical Society'' is the membership journal of the American Mathematical Society (AMS), published monthly except for the combined June/July issue. The first volume was published in 1953. Each issue of the magazine s ...
'', 44: 22–25.
The errors were nonetheless so numerous and significant that it took
Olga Taussky-Todd Olga Taussky-Todd (August 30, 1906 – October 7, 1995) was an Austrian and later Czech Americans, Czech-American mathematician. She published more than 300 research papers on algebraic number theory, integral matrices, and Matrix (mathematics), ...
three years to make the corrections.


See also


Concepts

*
List of things named after David Hilbert David Hilbert (1862–1943), a mathematician, is the eponym of all of the things (and topics) listed below. Mathematics and physics *Brouwer–Hilbert controversy *Einstein–Hilbert action *Einstein–Hilbert equations *Hilbert algebra (disambig ...
*
Foundations of geometry Foundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometry, non-Euclidean geometries. These are fundamental to the study and of hist ...
* Hilbert C*-module *
Hilbert cube In mathematics, the Hilbert cube, named after David Hilbert, is a topological space that provides an instructive example of some ideas in topology. Furthermore, many interesting topological spaces can be embedded in the Hilbert cube; that is, ca ...
*
Hilbert curve The Hilbert curve (also known as the Hilbert space-filling curve) is a Geometric continuity, continuous fractal curve, fractal space-filling curve first described by the German mathematician David Hilbert in 1891, as a variant of the space-filling ...
*
Hilbert matrix In linear algebra, a Hilbert matrix, introduced by , is a square matrix with entries being the unit fractions : H_ = \frac. For example, this is the 5 × 5 Hilbert matrix: : H = \begin 1 & \frac & \frac & \frac & \frac \\ \frac & \frac & \ ...
*
Hilbert metric In mathematics, the Hilbert metric, also known as the Hilbert projective metric, is an explicitly defined distance function on a bounded convex subset of the ''n''-dimensional Euclidean space R''n''. It was introduced by as a generalization of Ca ...
*
Hilbert–Mumford criterion In mathematics, the Hilbert–Mumford criterion, introduced by David Hilbert and David Mumford, characterizes the semistable and stable points of a group action on a vector space in terms of eigenvalues of 1-parameter subgroups . Definition of ...
*
Hilbert number In number theory, a branch of mathematics, a Hilbert number is a positive integer of the form (). The Hilbert numbers were named after David Hilbert. The sequence of Hilbert numbers begins 1, 5, 9, 13, 17, ... ) Properties *The Hilbert number s ...
*
Hilbert ring In algebra, a Hilbert ring or a Jacobson ring is a ring such that every prime ideal is an intersection of primitive ideals. For commutative rings primitive ideals are the same as maximal ideals so in this case a Jacobson ring is one in which ever ...
*
Hilbert–Poincaré series In mathematics, and in particular in the field of algebra, a Hilbert–Poincaré series (also known under the name Hilbert series), named after David Hilbert and Henri Poincaré, is an adaptation of the notion of dimension to the context of grade ...
*
Hilbert series and Hilbert polynomial In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded algebra, graded commutative algebra finitely generated over a field (mathematics), field are three strongly related notions which measure the g ...
*
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
*
Hilbert spectrum The Hilbert spectrum (sometimes referred to as the Hilbert amplitude spectrum), named after David Hilbert, is a statistical tool that can help in distinguishing among a mixture of moving signals. The spectrum itself is decomposed into its compo ...
*
Hilbert system In logic, more specifically proof theory, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style system, Hilbert-style proof system, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of formal proof Proof calcu ...
*
Hilbert transform In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, of a real variable and produces another function of a real variable . The Hilbert transform is given by the Cauchy principal value ...
*
Hilbert's arithmetic of ends In mathematics, specifically in the area of hyperbolic geometry, Hilbert's arithmetic of ends is a method for endowing a geometric set, the set of ideal points or "ends" of a hyperbolic plane, with an algebraic structure as a field. It was introduc ...
*
Hilbert's paradox of the Grand Hotel Hilbert's paradox of the Grand Hotel (colloquial: Infinite Hotel Paradox or Hilbert's Hotel) is a thought experiment which illustrates a counterintuitive property of infinite sets. It is demonstrated that a fully occupied hotel with infinitely ma ...
*
Hilbert–Schmidt operator In mathematics, a Hilbert–Schmidt operator, named after David Hilbert and Erhard Schmidt, is a bounded operator A \colon H \to H that acts on a Hilbert space H and has finite Hilbert–Schmidt norm \, A\, ^2_ \ \stackrel\ \sum_ \, Ae_i\, ^ ...
*
Hilbert–Smith conjecture In mathematics, the Hilbert–Smith conjecture is concerned with the transformation groups of manifolds; and in particular with the limitations on topological groups ''G'' that can act effectively (faithfully) on a (topological) manifold ''M''. Rest ...


Theorems

*
Hilbert–Burch theorem In mathematics, the Hilbert–Burch theorem describes the structure of some free resolutions of a quotient of a local or graded ring in the case that the quotient has projective dimension 2. proved a version of this theorem for polynomial ...
*
Hilbert's irreducibility theorem In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert in 1892, states that every finite set of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization o ...
*
Hilbert's Nullstellensatz In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic ge ...
*
Hilbert's theorem (differential geometry) In differential geometry, Hilbert's theorem (1901) states that there exists no complete Smooth surface, regular surface S of constant negative gaussian curvature K immersion (mathematics), immersed in \mathbb^. This theorem answers the question for ...
*
Hilbert's Theorem 90 In abstract algebra, Hilbert's Theorem 90 (or Satz 90) is an important result on cyclic extensions of field (mathematics), fields (or to one of its generalizations) that leads to Kummer theory. In its most basic form, it states that if ''L''/''K'' ...
*
Hilbert's syzygy theorem In mathematics, Hilbert's syzygy theorem is one of the three fundamental theorems about polynomial rings over field (mathematics), fields, first proved by David Hilbert in 1890, that were introduced for solving important open questions in invariant ...
*
Hilbert–Speiser theorem In mathematics, the Hilbert–Speiser theorem is a result on cyclotomic fields, characterising those with a normal integral basis. More generally, it applies to any finite abelian extension of , which by the Kronecker–Weber theorem are isomorphi ...


Other

*
Brouwer–Hilbert controversy The Brouwer–Hilbert controversy () was a debate in twentieth-century mathematics over fundamental questions about the consistency of axioms and the role of semantics and syntax in mathematics. L. E. J. Brouwer, a proponent of the constructivi ...
*
Direct method in the calculus of variations In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, introduced by Stanisław Zaremba and David Hilbert around 1900. The method relie ...
*
Entscheidungsproblem In mathematics and computer science, the ; ) is a challenge posed by David Hilbert and Wilhelm Ackermann in 1928. It asks for an algorithm that considers an inputted statement and answers "yes" or "no" according to whether it is universally valid ...
* ''
Geometry and the Imagination ''Geometry and the Imagination'' is the English translation of the 1932 book by David Hilbert and Stefan Cohn-Vossen. The book was based on a series of lectures Hilbert made in the winter of 1920–21. The book is an attempt to present some ...
'' *
General relativity priority dispute Albert Einstein's discovery of the gravitational field equations of general relativity and David Hilbert's almost simultaneous derivation of the theory using an elegant variational principle, during a period when the two corresponded frequent ...


Footnotes


Citations


Sources


Primary literature in English translation

* ** 1918. "Axiomatic thought," 1114–1115. ** 1922. "The new grounding of mathematics: First report," 1115–1133. ** 1923. "The logical foundations of mathematics," 1134–1147. ** 1930. "Logic and the knowledge of nature," 1157–1165. ** 1931. "The grounding of elementary number theory," 1148–1156. ** 1904. "On the foundations of logic and arithmetic," 129–138. ** 1925. "On the infinite," 367–392. ** 1927. "The foundations of mathematics," with comment by
Weyl Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
and Appendix by
Bernays Bernays is a surname. Notable people with the surname include: * Adolphus Bernays (1795–1864), professor of German in London; brother of Isaac Bernays and father of: ** Lewis Adolphus Bernays (1831–1908), public servant and agricultural write ...
, 464–489. * * * * *


Secondary literature

* , available at Gallica. The "Address" of Gabriel Bertrand of 20 December 1943 at the French Academy: he gives biographical sketches of the lives of recently deceased members, including
Pieter Zeeman Pieter Zeeman ( ; ; 25 May 1865 – 9 October 1943) was a Dutch physicist who shared the 1902 Nobel Prize in Physics with Hendrik Lorentz for their discovery and theoretical explanation of the Zeeman effect. Childhood and youth Pieter Zeeman was ...
, David Hilbert and
Georges Giraud Georges Julien Giraud (22 July 1889 – 16 March 1943) was a French mathematician, working in potential theory, partial differential equations, singular integrals and singular integral equations: he is mainly known for his solution of the Oblique ...
. * Bottazzini Umberto, 2003. ''Il flauto di Hilbert. Storia della matematica''. UTET, * Corry, L., Renn, J., and Stachel, J., 1997, "Belated Decision in the Hilbert-Einstein Priority Dispute," ''Science 278'': nn-nn. * * Dawson, John W. Jr 1997. ''Logical Dilemmas: The Life and Work of Kurt Gödel''. Wellesley MA: A. K. Peters. . * * Grattan-Guinness, Ivor, 2000. ''The Search for Mathematical Roots 1870–1940''. Princeton Univ. Press. * Gray, Jeremy, 2000. ''The Hilbert Challenge''. * * Mehra, Jagdish, 1974. ''Einstein, Hilbert, and the Theory of Gravitation''. Reidel. *
Piergiorgio Odifreddi Piergiorgio Odifreddi (born 13 July 1950, in Cuneo) is an Italian mathematician, logician, scholar of the history of science, and popular science writer and essayist, especially on philosophical atheism as a member of the Italian Union of Rationa ...
, 2003. ''Divertimento Geometrico. Le origini geometriche della logica da Euclide a Hilbert''. Bollati Boringhieri, . A clear exposition of the "errors" of Euclid and of the solutions presented in the ''Grundlagen der Geometrie'', with reference to
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
. * The definitive English-language biography of Hilbert. * * * *Sieg, Wilfried, and Ravaglia, Mark, 2005, "Grundlagen der Mathematik" in Grattan-Guinness, I., ed., ''Landmark Writings in Western Mathematics''.
Elsevier Elsevier ( ) is a Dutch academic publishing company specializing in scientific, technical, and medical content. Its products include journals such as ''The Lancet'', ''Cell (journal), Cell'', the ScienceDirect collection of electronic journals, ...
: 981–99. (in English) * Thorne, Kip, 1995. '' Black Holes and Time Warps: Einstein's Outrageous Legacy'', W. W. Norton & Company; Reprint edition. . * Georg von Wallwitz: ''Meine Herren, dies ist keine Badeanstalt. Wie ein Mathematiker das 20. Jahrhundert veränderte.'' Berenberg Verlag, Berlin 2017, ISBN 978-3-946334-24-8. The definitive German-language biography of Hilbert.


External links


Hilbert Bernays Project



ICMM 2014 dedicated to the memory of D.Hilbert
* * *
Hilbert's radio speech recorded in Königsberg 1930 (in German)
, with Englis
translation


* *
'From Hilbert's Problems to the Future'
lecture by Professor Robin Wilson,
Gresham College Gresham College is an institution of higher learning located at Barnard's Inn Hall off Holborn in Central London, England that does not accept students or award degrees. It was founded in 1597 under the Will (law), will of Sir Thomas Gresham, ...
, 27 February 2008 (available in text, audio and video formats). * {{DEFAULTSORT:Hilbert, David 1862 births 1943 deaths Scientists from Königsberg People from the Province of Prussia 19th-century German mathematicians 20th-century German mathematicians Foreign members of the Royal Society Foreign associates of the National Academy of Sciences German agnostics Formalism (deductive) Former Protestants German geometers German mathematical analysts German number theorists Operator theorists Recipients of the Pour le Mérite (civil class) German relativity theorists Academic staff of the University of Göttingen University of Königsberg alumni Academic staff of the University of Königsberg Philosophers of mathematics Members of the American Philosophical Society Recipients of the Cothenius Medal Presidents of the German Mathematical Society