Hilbert Ring
In algebra, a Hilbert ring or a Jacobson ring is a ring such that every prime ideal is an intersection of primitive ideals. For commutative rings primitive ideals are the same as maximal ideals so in this case a Jacobson ring is one in which every prime ideal is an intersection of maximal ideals. Jacobson rings were introduced independently by , who named them after Nathan Jacobson because of their relation to Jacobson radicals, and by , who named them Hilbert rings after David Hilbert because of their relation to Hilbert's Nullstellensatz. Jacobson rings and the Nullstellensatz Hilbert's Nullstellensatz of algebraic geometry is a special case of the statement that the polynomial ring in finitely many variables over a field is a Hilbert ring. A general form of the Nullstellensatz states that if ''R'' is a Jacobson ring, then so is any finitely generated ''R''-algebra ''S''. Moreover, the pullback of any maximal ideal ''J'' of ''S'' is a maximal ideal ''I'' of ''R'', and ''S/J'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Ideal
In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all the multiple (mathematics), multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary ideal, primary and semiprime ideal, semiprime. Prime ideals for commutative rings Definition An ideal (ring theory), ideal of a commutative ring is prime if it has the following two properties: * If and are two elements of such that their product is an element of , then is in or is in , * is not the whole ring . This generalizes the following property of prime numbers, known as Euclid's lemma: if is a prime number and if divides a product of two integers, then divides or divides . We can therefore say :A positive integer is a prime number if and only if n\Z is a prime ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tate Algebra
In algebra, the ring of restricted power series is the subring of a formal power series ring that consists of power series whose coefficients approach zero as degree goes to infinity.. Over a non-archimedean complete field, the ring is also called a Tate algebra. Quotient rings of the ring are used in the study of a formal algebraic space as well as rigid analysis, the latter over non-archimedean complete fields. Over a discrete topological ring, the ring of restricted power series coincides with a polynomial ring; thus, in this sense, the notion of "restricted power series" is a generalization of a polynomial. Definition Let ''A'' be a linearly topologized ring, separated and complete and \ the fundamental system of open ideals. Then the ring of restricted power series is defined as the projective limit of the polynomial rings over A/I_: :A \langle x_1, \dots, x_n \rangle = \varprojlim_ A/I_ _1, \dots, x_n/math>. In other words, it is the completion of the polynomial ring ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe became the first president while Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance over concerns about competing with the '' American Journal of Mathematics''. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influentia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
University Of Chicago Press
The University of Chicago Press is the university press of the University of Chicago, a Private university, private research university in Chicago, Illinois. It is the largest and one of the oldest university presses in the United States. It publishes a wide range of academic titles, including ''The Chicago Manual of Style'', numerous academic journals, and advanced monographs in the academic fields. The press is located just south of the Midway Plaisance on the University of Chicago campus. One of its quasi-independent projects is the BiblioVault, a digital repository for scholarly books. History The University of Chicago Press was founded in 1890, making it one of the oldest continuously operating university presses in the United States. Its first published book was Robert F. Harper's ''Assyrian and Babylonian Letters Belonging to the Kouyunjik Collections of the British Museum''. The book sold five copies during its first two years, but by 1900, the University of Chicago Pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematische Zeitschrift
''Mathematische Zeitschrift'' ( German for ''Mathematical Journal'') is a mathematical journal for pure and applied mathematics published by Springer Verlag. History The journal was founded in 1917, with its first issue appearing in 1918. It was initially edited by Leon Lichtenstein together with Konrad Knopp, Erhard Schmidt, and Issai Schur. Because Lichtenstein was Jewish, he was forced to step down as editor in 1933 under the Nazi rule of Germany; he fled to Poland and died soon after. The editorship was offered to Helmut Hasse Helmut Hasse (; 25 August 1898 – 26 December 1979) was a German mathematician working in algebraic number theory, known for fundamental contributions to class field theory, the application of ''p''-adic numbers to local class field theory and ..., but he refused, Translated by Bärbel Deninger from the 1982 German original. and Konrad Knopp took it over. Other past editors include Erich Kamke, Friedrich Karl Schmidt, Rolf Nevanlinna, Hel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proceedings Of The American Mathematical Society
''Proceedings of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. The journal is devoted to shorter research articles. As a requirement, all articles must be at most 15 printed pages. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor of 0.813. Scope ''Proceedings of the American Mathematical Society'' publishes articles from all areas of pure and applied mathematics, including topology, geometry, analysis, algebra, number theory, combinatorics, logic, probability and statistics. Abstracting and indexing This journal is indexed in the following databases: 2011. American Mathematical Society. * [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semi-local Ring
In mathematics, a semi-local ring is a ring for which ''R''/J(''R'') is a semisimple ring, where J(''R'') is the Jacobson radical of ''R''. The above definition is satisfied if ''R'' has a finite number of maximal right ideals (and finite number of maximal left ideals). When ''R'' is a commutative ring, the converse implication is also true, and so the definition of semi-local for commutative rings is often taken to be "having finitely many maximal ideals". Some literature refers to a commutative semi-local ring in general as a ''quasi-semi-local ring'', using semi-local ring to refer to a Noetherian ring with finitely many maximal ideals. A semi-local ring is thus more general than a local ring, which has only one maximal (right/left/two-sided) ideal. Examples * Any right or left Artinian ring, any serial ring, and any semiperfect ring is semi-local. * The quotient \mathbb/m\mathbb is a semi-local ring. In particular, if m is a prime power, then \mathbb/m\mathbb is a loca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals. If the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. Formally, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an n such that I_=I_=\cdots. Equivalently, a ring is left-Noetherian (respectively right-Noetherian) if every left ideal (respectively right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on the Noetherian property ( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zariski's Lemma
In algebra, Zariski's lemma, proved by , states that, if a field is finitely generated as an associative algebra over another field , then is a finite field extension of (that is, it is also finitely generated as a vector space). An important application of the lemma is a proof of the weak form of Hilbert's Nullstellensatz: if ''I'' is a proper ideal of k _1, ..., t_n/math> (''k'' an algebraically closed field), then ''I'' has a zero; i.e., there is a point ''x'' in k^n such that f(x) = 0 for all ''f'' in ''I''. (Proof: replacing ''I'' by a maximal ideal \mathfrak, we can assume I = \mathfrak is maximal. Let A = k _1, ..., t_n/math> and \phi: A \to A / \mathfrak be the natural surjection. By the lemma A / \mathfrak is a finite extension. Since ''k'' is algebraically closed that extension must be ''k''. Then for any f \in \mathfrak, :f(\phi(t_1), \cdots, \phi(t_n)) = \phi(f(t_1, \cdots, t_n)) = 0; that is to say, x = (\phi(t_1), \cdots, \phi(t_n)) is a zero of \mathfrak.) The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nilradical Of A Ring
In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements: :\mathfrak_R = \lbrace f \in R \mid f^m=0 \text m\in\mathbb_\rbrace. It is thus the radical of the zero ideal. If the nilradical is the zero ideal, the ring is called a reduced ring. The nilradical of a commutative ring is the intersection of all prime ideals. In the non-commutative ring case the same definition does not always work. This has resulted in several radicals generalizing the commutative case in distinct ways; see the article Radical of a ring for more on this. The nilradical of a Lie algebra is similarly defined for Lie algebras. Commutative rings The nilradical of a commutative ring is the set of all nilpotent elements in the ring, or equivalently the radical of the zero ideal. This is an ideal because the sum of any two nilpotent elements is nilpotent (by the binomial formula), and the product of any element with a nilpotent element is nilpotent (by commu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Goldman Ideal
In mathematics, a Goldman domain or G-domain is an integral domain ''A'' whose field of fractions is a finitely generated algebra over ''A''.Goldman domains/ideals are called G-domains/ideals in (Kaplansky 1974). They are named after Oscar Goldman. An overring (i.e., an intermediate ring lying between the ring and its field of fractions) of a Goldman domain is again a Goldman domain. There exists a Goldman domain where all nonzero prime ideals are maximal although there are infinitely many prime ideals.Kaplansky, p. 13 An ideal ''I'' in a commutative ring ''A'' is called a Goldman ideal if the quotient ''A''/''I'' is a Goldman domain. A Goldman ideal is thus prime, but not necessarily maximal. In fact, a commutative ring is a Jacobson ring if and only if every Goldman ideal in it is maximal. The notion of a Goldman ideal can be used to give a slightly sharpened characterization of a radical of an ideal: the radical of an ideal ''I'' is the intersection of all Goldman ideal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radical Ideal
Radical (from Latin: ', root) may refer to: Politics and ideology Politics *Classical radicalism, the Radical Movement that began in late 18th century Britain and spread to continental Europe and Latin America in the 19th century *Radical politics, the political intent of fundamental societal change * Radical Party (other), several political parties *Radicals (UK), a British and Irish grouping in the early to mid-19th century *Radicalization *Politicians from the Radical Civic Union Ideologies * Radical chic, a term coined by Tom Wolfe to describe the pretentious adoption of radical causes *Radical feminism, a perspective within feminism that focuses on patriarchy * Radical Islam, or Islamic extremism * Radical Christianity * Radical veganism, a radical interpretation of veganism, usually combined with anarchism *Radical Reformation, an Anabaptist movement concurrent with the Protestant Reformation Science and mathematics Science *Radical (chemistry), an atom, molecule, o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |