HOME

TheInfoList



OR:

A hemi-cuboctahedron is an abstract polyhedron, containing half the faces of a semiregular
cuboctahedron A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it ...
. It has 4 triangular faces and 3 square faces, 12 edges, and 6 vertices. It can be seen as a rectified
hemi-octahedron A hemi-octahedron is an abstract regular polyhedron, containing half the faces of a regular octahedron. It has 4 triangular faces, 6 edges, and 3 vertices. Its dual polyhedron is the hemicube. It can be realized as a projective polyhedron (a ...
or rectified hemi-cube. It can be realized as a
projective polyhedron In geometry, a (globally) projective polyhedron is a tessellation of the real projective plane. These are projective analogs of spherical polyhedra – tessellations of the sphere – and toroidal polyhedra – tessellations of the toroids. Proj ...
(a
tessellation A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of ge ...
of the
real projective plane In mathematics, the real projective plane is an example of a compact non- orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has ...
by 4 triangles and 3 square), which can be visualized by constructing the projective plane as a hemisphere where opposite points along the boundary are connected.


Dual

Its
dual polyhedron In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the othe ...
is a rhombic hemi-dodecahedron which has 7 vertices (1-7), 12 edges (a-l), and 6 rhombic faces (A-F). :


Related polyhedra

It has a real presentation as a
uniform star polyhedron In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting. Each polyhedron can contain either star polygon faces, star polygon vertex figure ...
, the
tetrahemihexahedron In geometry, the tetrahemihexahedron or hemicuboctahedron is a uniform star polyhedron, indexed as U4. It has 7 faces (4 triangles and 3 squares), 12 edges, and 6 vertices. Its vertex figure is a crossed quadrilateral. Its Coxeter–Dynkin diagr ...
. :


See also

*
Hemi-dodecahedron A hemi-dodecahedron is an abstract regular polyhedron, containing half the faces of a regular dodecahedron. It can be realized as a projective polyhedron (a tessellation of the real projective plane by 6 pentagons), which can be visualized by con ...
*
Hemi-icosahedron A hemi-icosahedron is an abstract regular polyhedron, containing half the faces of a regular icosahedron. It can be realized as a projective polyhedron (a tessellation of the real projective plane by 10 triangles), which can be visualized by cons ...


References

* {{citation , last1 = McMullen , first1 = Peter , author1-link = Peter McMullen , first2 = Egon , last2 = Schulte , chapter = 6C. Projective Regular Polytopes , title = Abstract Regular Polytopes , edition = 1st , publisher = Cambridge University Press , isbn = 0-521-81496-0 , date=December 2002 , pages
162–165


External links


The hemicubeoctahedron
Projective polyhedra eo:Duon-dekduedro