HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a harshad number (or Niven number) in a given number base is an
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
that is divisible by the sum of its digits when written in that base. Harshad numbers in base are also known as -harshad (or -Niven) numbers. Because being a Harshad number is determined based on the base the number is expressed in, a number can be a Harshad number many times over. So-called Trans-Harshad numbers are Harshad numbers in every base. Harshad numbers were defined by D. R. Kaprekar, a mathematician from
India India, officially the Republic of India, is a country in South Asia. It is the List of countries and dependencies by area, seventh-largest country by area; the List of countries by population (United Nations), most populous country since ...
. The word "harshad" comes from the
Sanskrit Sanskrit (; stem form ; nominal singular , ,) is a classical language belonging to the Indo-Aryan languages, Indo-Aryan branch of the Indo-European languages. It arose in northwest South Asia after its predecessor languages had Trans-cultural ...
' (joy) + ' (give), meaning joy-giver. The term "Niven number" arose from a paper delivered by
Ivan M. Niven Ivan Morton Niven (October 25, 1915 May 9, 1999) was a Canadian-American Number theory, number theorist best remembered for his work on Waring's problem. He worked for many years as a professor at the University of Oregon, and was president of the ...
at a conference on
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
in 1977.


Definition

Stated mathematically, let be a positive integer with digits when written in base , and let the digits be a_i (i = 0, 1, \ldots, m-1). (It follows that a_i must be either zero or a positive integer up to .) can be expressed as :X=\sum_^ a_i n^i. is a harshad number in base if: :X \equiv 0 \bmod . A number which is a harshad number in every number base is called an all-harshad number, or an all-Niven number. There are only four all-harshad numbers: 1, 2, 4, and 6. The number 12 is a harshad number in all bases except
octal Octal (base 8) is a numeral system with eight as the base. In the decimal system, each place is a power of ten. For example: : \mathbf_ = \mathbf \times 10^1 + \mathbf \times 10^0 In the octal system, each place is a power of eight. For ex ...
.


Examples

* The number 18 is a harshad number in
base 10 The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (''decimal fractions'') of t ...
, because the sum of the digits 1 and 8 is 9, and 18 is
divisible In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisibl ...
by 9. * The Hardy–Ramanujan number (1729) is a harshad number in base 10, since it is divisible by 19, the sum of its digits (1729 = 19 × 91). * The number 19 is not a harshad number in base 10, because the sum of the digits 1 and 9 is 10, and 19 is not divisible by 10. *In base 10, every
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
expressible in the form 9R''n''''a''''n'', where the number R''n'' consists of ''n'' copies of the single digit 1, ''n'' > 0, and ''a''''n'' is a positive integer less than 10''n'' and multiple of ''n'', is a harshad number. (R. D’Amico, 2019). The number 9R3''a''3 = 521478, where R3 = 111, ''n'' = 3 and ''a''3 = 3×174 = 522, is a harshad number; in fact, we have: 521478/(5+2+1+4+7+8) = 521478/27 = 19314. *Harshad numbers in base 10 form the
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
: *: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 102, 108, 110, 111, 112,
114 114 may refer to: *114 (number) *AD 114 *114 BC *114 (1st London) Army Engineer Regiment, Royal Engineers, an English military unit *114 (Antrim Artillery) Field Squadron, Royal Engineers, a Northern Irish military unit *114 (MBTA bus) *114 (New Je ...
, 117, 120, 126, 132, 133, 135, 140, 144, 150, 152, 153, 156, 162, 171, 180, 190, 192, 195,
198 __NOTOC__ Year 198 (CXCVIII) was a common year starting on Sunday of the Julian calendar. At the time, it was known as the Year of the Consulship of Sergius and Gallus (or, less frequently, year 951 ''Ab urbe condita''). The denomination 198 fo ...
, 200, ... . *All integers between
zero 0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and compl ...
and are -harshad numbers.


Properties

Given the divisibility test for 9, one might be tempted to generalize that all numbers divisible by 9 are also harshad numbers. But for the purpose of determining the harshadness of , the digits of can only be added up once and must be divisible by that sum; otherwise, it is not a harshad number. For example, 99 is not a harshad number, since 9 + 9 = 18, and 99 is not divisible by 18. The base number (and furthermore, its powers) will always be a harshad number in its own base, since it will be represented as "10" and 1 + 0 = 1. All numbers whose base ''b'' digit sum divides ''b''−1 are harshad numbers in base ''b''. For a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
to also be a harshad number it must be less than or equal to the base number, otherwise the digits of the prime will add up to a number that is more than 1, but less than the prime, and will not be divisible. For example: 11 is not harshad in base 10 because the sum of its digits “11” is 1 + 1 = 2, and 11 is not divisible by 2; while in base 12 the number 11 may be represented as “”, the sum of whose digits is also . Since is divisible by itself, it is harshad in base 12. Although the sequence of
factorial In mathematics, the factorial of a non-negative denoted is the Product (mathematics), product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times ...
s starts with harshad numbers in base 10, not all factorials are harshad numbers. 432! is the first that is not. (432! has digit sum 3897 = 32 × 433 in base 10, thus not dividing 432!) The smallest such that k \cdot n is a harshad number are :1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 9, 3, 2, 3, 6, 1, 6, 1, 1, 5, 9, 1, 2, 6, 1, 3, 9, 1, 12, 6, 4, 3, 2, 1, 3, 3, 3, 1, 10, 1, 12, 3, 1, 5, 9, 1, 8, 1, 2, 3, 18, 1, 2, 2, 2, 9, 9, 1, 12, 6, 1, 3, 3, 2, 3, 3, 3, 1, 18, 1, 7, 3, 2, 2, 4, 2, 9, 1, ... . The smallest such that k \cdot n is not a harshad number are :11, 7, 5, 4, 3, 11, 2, 2, 11, 13, 1, 8, 1, 1, 1, 1, 1, 161, 1, 8, 5, 1, 1, 4, 1, 1, 7, 1, 1, 13, 1, 1, 1, 1, 1, 83, 1, 1, 1, 4, 1, 4, 1, 1, 11, 1, 1, 2, 1, 5, 1, 1, 1, 537, 1, 1, 1, 1, 1, 83, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 68, 1, 1, 1, 1, 1, 1, 1, 2, ... .


Other bases

The harshad numbers in base 12 are: :1, 2, 3, 4, 5, 6, 7, 8, 9, , , 10, 1, 20, 29, 30, 38, 40, 47, 50, 56, 60, 65, 70, 74, 80, 83, 90, 92, 0, 1, 0, 100, 10, 110, 115, 119, 120, 122, 128, 130, 134, 137, 146, 150, 153, 155, 164, 172, 173, 182, 191, 10, 10, 1, 200, ... where represents ten and represents eleven. Smallest such that k \cdot n is a base-12 harshad number are (written in base 10): :1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 6, 4, 3, 10, 2, 11, 3, 4, 1, 7, 1, 12, 6, 4, 3, 11, 2, 11, 3, 1, 5, 9, 1, 12, 11, 4, 3, 11, 2, 11, 1, 4, 4, 11, 1, 16, 6, 4, 3, 11, 2, 1, 3, 11, 11, 11, 1, 12, 11, 5, 7, 9, 1, 7, 3, 3, 9, 11, 1, ... Smallest such that k \cdot n is not a base-12 harshad number are (written in base 10): :13, 7, 5, 4, 3, 3, 2, 2, 2, 2, 13, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 157, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 157, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1885, 1, 1, 1, 1, 1, 3, ... Similar to base 10, not all factorials are harshad numbers in base 12. After 7! (= 5040 = 200 in base 12, with digit sum 13 in base 12, and 13 does not divide 7!), 1276! is the next that is not. (1276! has digit sum 14201 = 11 × 1291 in base 12, thus does not divide 1276!)


Consecutive harshad numbers


Maximal runs of consecutive harshad numbers

Cooper and Kennedy proved in 1993 that no 21 consecutive integers are all harshad numbers in base 10. They also constructed infinitely many 20-tuples of consecutive integers that are all 10-harshad numbers, the smallest of which exceeds 1044363342786. extended the Cooper and Kennedy result to show that there are 2''b'' but not 2''b'' + 1 consecutive ''b''-harshad numbers for any base ''b''. This result was strengthened to show that there are infinitely many runs of 2''b'' consecutive ''b''-harshad numbers for ''b'' = 2 or 3 by and for arbitrary ''b'' by Brad Wilson in 1997. In binary, there are thus infinitely many runs of four consecutive harshad numbers and in ternary infinitely many runs of six. In general, such maximal sequences run from ''N''·''bk'' − ''b'' to ''N''·''bk'' + (''b'' − 1), where ''b'' is the base, ''k'' is a relatively large power, and ''N'' is a constant. Given one such suitably chosen sequence, we can convert it to a larger one as follows: * Inserting zeroes into ''N'' will not change the sequence of digital sums (just as 21, 201 and 2001 are all 10-harshad numbers). * If we insert ''n'' zeroes after the first digit, ''α'' (worth ''αbi''), we increase the value of ''N'' by \alpha b^i \left (b^n - 1 \right ). * If we can ensure that ''bn'' − 1 is divisible by all digit sums in the sequence, then the divisibility by those sums is maintained. * If our initial sequence is chosen so that the digit sums are
coprime In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiv ...
to ''b'', we can solve ''bn'' = 1
modulo In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the '' modulus'' of the operation. Given two positive numbers and , mo ...
all those sums. * If that is not so, but the part of each digit sum not coprime to ''b'' divides ''αbi'', then divisibility is still maintained. * ''(Unproven)'' The initial sequence is so chosen. Thus our initial sequence yields an infinite set of solutions.


First runs of exactly consecutive 10-harshad numbers

The smallest naturals starting runs of ''exactly'' consecutive 10-harshad numbers (i.e., the smallest such that x, x+1, \cdots, x+n-1 are harshad numbers but x-1 and x+n are not) are as follows :
, - , , , 1 , , 2 , , 3 , , 4 , , 5 , - , , , 12 , , 20 , , 110 , , 510 , , , - , , , 6 , , 7 , , 8 , , 9 , , 10 , - , , , , , , , , , , , 1 , - , , , 11 , , 12 , , 13 , , 14 , , 15 , - , , , , , , , , , , , , - , , , 16 , , 17 , , 18 , , 19 , , 20 , - , , , , , , , , , , , , -
By the previous section, no such exists for n > 20.


Estimating the density of harshad numbers

If we let N(x) denote the number of harshad numbers \le x, then for any given \varepsilon > 0, :x^ \ll N(x) \ll \frac as shown by Jean-Marie De Koninck and Nicolas Doyon; furthermore, De Koninck, Doyon and Kátai proved that :N(x)=(c+o(1))\frac, where c = (14/27) \log 10 \approx 1.1939 and the o(1) term uses
Big O notation Big ''O'' notation is a mathematical notation that describes the asymptotic analysis, limiting behavior of a function (mathematics), function when the Argument of a function, argument tends towards a particular value or infinity. Big O is a memb ...
.


Sums of harshad numbers

Every natural number not exceeding one billion is either a harshad number or the sum of two harshad numbers. Conditional to a technical hypothesis on the zeros of certain
Dedekind zeta function In mathematics, the Dedekind zeta function of an algebraic number field ''K'', generally denoted ζ''K''(''s''), is a generalization of the Riemann zeta function (which is obtained in the case where ''K'' is the field of rational numbers Q). It ca ...
s, Sanna proved that there exists a positive integer k such that every natural number is the sum of at most k harshad numbers, that is, the set of harshad numbers is an additive basis. The number of ways that each natural number 1, 2, 3, ... can be written as sum of two harshad numbers is: :0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 3, 2, 4, 3, 3, 4, 3, 3, 5, 3, 4, 5, 4, 4, 7, 4, 5, 6, 5, 3, 7, 4, 4, 6, 4, 2, 7, 3, 4, 5, 4, 3, 7, 3, 4, 5, 4, 3, 8, 3, 4, 6, 3, 3, 6, 2, 5, 6, 5, 3, 8, 4, 4, 6, ... . The smallest number that can be written in exactly 1, 2, 3, ... ways as the sum of two harshad numbers is: :2, 4, 6, 8, 10, 51, 48, 72, 108, 126, 90, 138, 144, 120, 198, 162, 210, 216, 315, 240, 234, 306, 252, 372, 270, 546, 360, 342, 444, 414, 468, 420, 642, 450, 522, 540, 924, 612, 600, 666, 630, 888, 930, 756, 840, 882, 936, 972, 1098, 1215, 1026, 1212, 1080, ... .


Nivenmorphic numbers

A Nivenmorphic number or harshadmorphic number for a given number base is an integer such that there exists some harshad number whose
digit sum In mathematics, the digit sum of a natural number in a given radix, number base is the sum of all its numerical digit, digits. For example, the digit sum of the decimal number 9045 would be 9 + 0 + 4 + 5 = 18. Definition Let n be a natural number. ...
is , and , written in that base, terminates written in the same base. For example, 18 is a Nivenmorphic number for base 10: 16218 is a harshad number 16218 has 18 as digit sum 18 terminates 16218 Sandro Boscaro determined that for base 10 all positive integers are Nivenmorphic numbers except 11. In fact, for an even integer ''n'' > 1, all positive integers except ''n''+1 are Nivenmorphic numbers for base ''n'', and for an odd integer ''n'' > 1, all positive integers are Nivenmorphic numbers for base ''n''. e.g. the Nivenmorphic numbers in base 12 are (all positive integers except 13). The smallest number with base 10 digit sum ''n'' and terminates ''n'' written in base 10 are: (0 if no such number exists) :1, 2, 3, 4, 5, 6, 7, 8, 9, 910, 0, 912, 11713, 6314, 915, 3616, 15317, 918, 17119, 9920, 18921, 9922, 82823, 19824, 9925, 46826, 18927, 18928, 78329, 99930, 585931, 388832, 1098933, 198934, 289835, 99936, 99937, 478838, 198939, 1999840, 2988941, 2979942, 2979943, 999944, 999945, 4698946, 4779947, 2998848, 2998849, 9999950, ...


Multiple harshad numbers

defines a multiple harshad number as a harshad number that, when divided by the sum of its digits, produces another harshad number.. He states that 6804 is "MHN-4" on the grounds that :\begin 6804/18 &= 378\\ 378/18 &= 21\\ 21/3 &= 7\\ 7/7 &= 1 \end (it is not MHN-5 since 1/1=1, but 1 is not "another" harshad number) and went on to show that 2016502858579884466176 is MHN-12. The number 10080000000000 = 1008 × 1010, which is smaller, is also MHN-12. In general, 1008 × 10''n'' is MHN-(''n''+2).


References


External links

{{Divisor classes Base-dependent integer sequences Eponymous numbers in mathematics