HOME

TheInfoList



OR:

In geometry, a line segment is a part of a straight line that is bounded by two distinct end
points Point or points may refer to: Places * Point, Lewis, a peninsula in the Outer Hebrides, Scotland * Point, Texas, a city in Rains County, Texas, United States * Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland * Point ...
, and contains every point on the line that is between its endpoints. The
length Length is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the Interna ...
of a line segment is given by the Euclidean distance between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry, a line segment is often denoted using a line above the symbols for the two endpoints (such as \overline). Examples of line segments include the sides of a triangle or square. More generally, when both of the segment's end points are vertices of a polygon or polyhedron, the line segment is either an edge (of that polygon or polyhedron) if they are adjacent vertices, or a diagonal. When the end points both lie on a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
(such as a circle), a line segment is called a
chord Chord may refer to: * Chord (music), an aggregate of musical pitches sounded simultaneously ** Guitar chord a chord played on a guitar, which has a particular tuning * Chord (geometry), a line segment joining two points on a curve * Chord ( ...
(of that curve).


In real or complex vector spaces

If ''V'' is a vector space over \mathbb or \mathbb, and ''L'' is a
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
of ''V'', then ''L'' is a line segment if ''L'' can be parameterized as :L = \ for some vectors \mathbf, \mathbf \in V\,\!. In which case, the vectors u and are called the end points of ''L''. Sometimes, one needs to distinguish between "open" and "closed" line segments. In this case, one would define a closed line segment as above, and an open line segment as a subset ''L'' that can be parametrized as : L = \ for some vectors \mathbf, \mathbf \in V\,\!. Equivalently, a line segment is the
convex hull In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space ...
of two points. Thus, the line segment can be expressed as a convex combination of the segment's two end points. In geometry, one might define point ''B'' to be between two other points ''A'' and ''C'', if the distance ''AB'' added to the distance ''BC'' is equal to the distance ''AC''. Thus in \R^2, the line segment with endpoints and is the following collection of points: :\left\ .


Properties

*A line segment is a connected, non-empty set. *If ''V'' is a topological vector space, then a closed line segment is a
closed set In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a cl ...
in ''V''. However, an open line segment is an open set in ''V'' if and only if ''V'' is one-dimensional. *More generally than above, the concept of a line segment can be defined in an ordered geometry. *A pair of line segments can be any one of the following: intersecting, parallel,
skew Skew may refer to: In mathematics * Skew lines, neither parallel nor intersecting. * Skew normal distribution, a probability distribution * Skew field or division ring * Skew-Hermitian matrix * Skew lattice * Skew polygon, whose vertices do not ...
, or none of these. The last possibility is a way that line segments differ from lines: if two nonparallel lines are in the same Euclidean plane then they must cross each other, but that need not be true of segments.


In proofs

In an axiomatic treatment of geometry, the notion of betweenness is either assumed to satisfy a certain number of axioms, or defined in terms of an isometry of a line (used as a coordinate system). Segments play an important role in other theories. For example, in a '' convex set'', the segment that joins any two points of the set is contained in the set. This is important because it transforms some of the analysis of convex sets, to the analysis of a line segment. The ''
segment addition postulate In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, bu ...
'' can be used to add congruent segment or segments with equal lengths, and consequently substitute other segments into another statement to make segments congruent.


As a degenerate ellipse

A line segment can be viewed as a degenerate case of an
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
, in which the semiminor axis goes to zero, the foci go to the endpoints, and the eccentricity goes to one. A standard definition of an ellipse is the set of points for which the sum of a point's distances to two foci is a constant; if this constant equals the distance between the foci, the line segment is the result. A complete orbit of this ellipse traverses the line segment twice. As a degenerate orbit, this is a radial elliptic trajectory.


In other geometric shapes

In addition to appearing as the edges and diagonals of polygons and polyhedra, line segments also appear in numerous other locations relative to other
geometric shape A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape or plane figure is constrained to lie on ...
s.


Triangles

Some very frequently considered segments in a triangle to include the three altitudes (each perpendicularly connecting a side or its
extension Extension, extend or extended may refer to: Mathematics Logic or set theory * Axiom of extensionality * Extensible cardinal * Extension (model theory) * Extension (predicate logic), the set of tuples of values that satisfy the predicate * E ...
to the opposite vertex), the three
median In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value. The basic fe ...
s (each connecting a side's midpoint to the opposite vertex), the perpendicular bisectors of the sides (perpendicularly connecting the midpoint of a side to one of the other sides), and the internal angle bisectors (each connecting a vertex to the opposite side). In each case, there are various
equalities In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality b ...
relating these segment lengths to others (discussed in the articles on the various types of segment), as well as various inequalities. Other segments of interest in a triangle include those connecting various triangle centers to each other, most notably the incenter, the circumcenter, the nine-point center, the
centroid In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any ...
and the
orthocenter In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to (i.e., forming a right angle with) a line containing the base (the side opposite the vertex). This line containing the opposite side is called the ' ...
.


Quadrilaterals

In addition to the sides and diagonals of a
quadrilateral In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, ...
, some important segments are the two bimedians (connecting the midpoints of opposite sides) and the four maltitudes (each perpendicularly connecting one side to the midpoint of the opposite side).


Circles and ellipses

Any straight line segment connecting two points on a circle or ellipse is called a
chord Chord may refer to: * Chord (music), an aggregate of musical pitches sounded simultaneously ** Guitar chord a chord played on a guitar, which has a particular tuning * Chord (geometry), a line segment joining two points on a curve * Chord ( ...
. Any chord in a circle which has no longer chord is called a
diameter In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid fo ...
, and any segment connecting the circle's
center Center or centre may refer to: Mathematics *Center (geometry), the middle of an object * Center (algebra), used in various contexts ** Center (group theory) ** Center (ring theory) * Graph center, the set of all vertices of minimum eccentricity ...
(the midpoint of a diameter) to a point on the circle is called a
radius In classical geometry, a radius ( : radii) of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the ...
. In an ellipse, the longest chord, which is also the longest
diameter In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid fo ...
, is called the ''major axis'', and a segment from the midpoint of the major axis (the ellipse's center) to either endpoint of the major axis is called a ''semi-major axis''. Similarly, the shortest diameter of an ellipse is called the ''minor axis'', and the segment from its midpoint (the ellipse's center) to either of its endpoints is called a ''semi-minor axis''. The chords of an ellipse which are perpendicular to the major axis and pass through one of its foci are called the latera recta of the ellipse. The ''interfocal segment'' connects the two foci.


Directed line segment

When a line segment is given an
orientation Orientation may refer to: Positioning in physical space * Map orientation, the relationship between directions on a map and compass directions * Orientation (housing), the position of a building with respect to the sun, a concept in building desi ...
(direction) it is called a directed line segment. It suggests a
translation Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
or
displacement Displacement may refer to: Physical sciences Mathematics and Physics *Displacement (geometry), is the difference between the final and initial position of a point trajectory (for instance, the center of mass of a moving object). The actual path ...
(perhaps caused by a
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
). The magnitude and direction are indicative of a potential change. Extending a directed line segment semi-infinitely produces a ''
ray Ray may refer to: Fish * Ray (fish), any cartilaginous fish of the superorder Batoidea * Ray (fish fin anatomy), a bony or horny spine on a fin Science and mathematics * Ray (geometry), half of a line proceeding from an initial point * Ray (gra ...
'' and infinitely in both directions produces a ''directed line''. This suggestion has been absorbed into
mathematical physics Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and t ...
through the concept of a
Euclidean vector In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Vectors can be added to other vectors ...
. The collection of all directed line segments is usually reduced by making "equivalent" any pair having the same length and orientation.Eutiquio C. Young (1978) ''Vector and Tensor Analysis'', pages 2 & 3,
Marcel Dekker Marcel Dekker was a journal and encyclopedia publishing company with editorial boards found in New York City. Dekker encyclopedias are now published by CRC Press, part of the Taylor and Francis publishing group. History Initially a textbook publ ...
This application of an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relatio ...
dates from
Giusto Bellavitis Giusto Bellavitis (22 November 1803 – 6 November 1880) was an Italian mathematician, senator, and municipal councilor.Charles Laisant (1880) "Giusto Bellavitis. Nécrologie", ''Bulletin des sciences mathématiques et astronomiques'', 2nd sé ...
's introduction of the concept of equipollence of directed line segments in 1835.


Generalizations

Analogous to
straight line In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a line segment ...
segments above, one can also define arcs as segments of a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
. In one-dimensional space, a '' ball'' is a line segment.


Types of line segments

*
Chord (geometry) A chord of a circle is a straight line segment whose endpoints both lie on a circular arc. The infinite line extension of a chord is a secant line, or just ''secant''. More generally, a chord is a line segment joining two points on any curve, f ...
*
Diameter In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid fo ...
*
Radius In classical geometry, a radius ( : radii) of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the ...


See also

*
Polygonal chain In geometry, a polygonal chain is a connected series of line segments. More formally, a polygonal chain is a curve specified by a sequence of points (A_1, A_2, \dots, A_n) called its vertices. The curve itself consists of the line segments co ...
*
Interval (mathematics) In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Othe ...
*
Line segment intersection In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either ...
, the algorithmic problem of finding intersecting pairs in a collection of line segments


Notes


References

* David Hilbert ''The Foundations of Geometry''. The Open Court Publishing Company 1950, p. 4


External links

*
Line Segment
at
PlanetMath PlanetMath is a free, collaborative, mathematics online encyclopedia. The emphasis is on rigour, openness, pedagogy, real-time content, interlinked content, and also community of about 24,000 people with various maths interests. Intended to be c ...

Copying a line segment with compass and straightedge


Animated demonstration {{Authority control Elementary geometry Linear algebra