Group Scheme Of Roots Of Unity
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
and
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
, the term multiplicative group refers to one of the following concepts: *the
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
under multiplication of the
invertible In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
elements of a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
,
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
, or other structure for which one of its operations is referred to as multiplication. In the case of a field ''F'', the group is , where 0 refers to the
zero element In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. Additive identities An ''additive ide ...
of ''F'' and the
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, a binary operation ...
• is the field
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
, *the
algebraic torus In mathematics, an algebraic torus, where a one dimensional torus is typically denoted by \mathbf G_, \mathbb_m, or \mathbb, is a type of commutative affine algebraic group commonly found in Projective scheme, projective algebraic geometry and tor ...
GL(1).


Examples

*The multiplicative group of integers modulo ''n'' is the group under multiplication of the invertible elements of \mathbb/n\mathbb. When ''n'' is not prime, there are elements other than zero that are not invertible. * The multiplicative group of
positive real numbers In mathematics, the set of positive real numbers, \R_ = \left\, is the subset of those real numbers that are greater than zero. The non-negative real numbers, \R_ = \left\, also include zero. Although the symbols \R_ and \R^ are ambiguously used fo ...
\mathbb^+ is an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
with 1 its
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
. The
logarithm In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , the ...
is a
group isomorphism In abstract algebra, a group isomorphism is a function between two groups that sets up a bijection between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the ...
of this group to the
additive group An additive group is a group of which the group operation is to be thought of as ''addition'' in some sense. It is usually abelian, and typically written using the symbol + for its binary operation. This terminology is widely used with structu ...
of real numbers, \mathbb. * The multiplicative group of a field F is the set of all nonzero elements: F^\times = F -\, under the multiplication operation. If F is
finite Finite may refer to: * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Gr ...
of order ''q'' (for example ''q'' = ''p'' a prime, and F = \mathbb F_p=\mathbb Z/p\mathbb Z), then the
multiplicative group In mathematics and group theory, the term multiplicative group refers to one of the following concepts: *the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referre ...
is cyclic: F^\times \cong C_.


Group scheme of roots of unity

The group scheme of ''n''-th
roots of unity In mathematics, a root of unity is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group char ...
is by definition the kernel of the ''n''-power map on the multiplicative group GL(1), considered as a
group scheme In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups hav ...
. That is, for any integer ''n'' > 1 we can consider the morphism on the multiplicative group that takes ''n''-th powers, and take an appropriate
fiber product of schemes In mathematics, specifically in algebraic geometry, the fiber product of schemes is a fundamental construction. It has many interpretations and special cases. For example, the fiber product describes how an algebraic variety over one field determi ...
, with the morphism ''e'' that serves as the identity. The resulting group scheme is written μ''n'' (or \mu\!\!\mu_n). It gives rise to a
reduced scheme This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geomet ...
, when we take it over a field ''K'',
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
the characteristic of ''K'' does not divide ''n''. This makes it a source of some key examples of non-reduced schemes (schemes with
nilpotent element In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term, along with its sister idempotent, was introduced by Benjamin Peirce i ...
s in their structure sheaves); for example μ''p'' over a
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
with ''p'' elements for any
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
''p''. This phenomenon is not easily expressed in the classical language of algebraic geometry. For example, it turns out to be of major importance in expressing the
duality theory of abelian varieties In mathematics, a dual abelian variety can be defined from an abelian variety ''A'', defined over a field ''k''. A 1-dimensional abelian variety is an elliptic curve, and every elliptic curve is isomorphic to its dual, but this fails for higher- ...
in characteristic ''p'' (theory of Pierre Cartier). The
Galois cohomology In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group ''G'' associated with a field extension ''L''/''K'' acts in a na ...
of this group scheme is a way of expressing
Kummer theory Kummer is a German surname. Notable people with the surname include: * Bernhard Kummer (1897–1962), German Germanist * Clare Kummer (1873–1958), American composer, lyricist and playwright * Clarence Kummer (1899–1930), American jockey * Chri ...
.


See also

*
Multiplicative group of integers modulo n In modular arithmetic, the integers coprime (relatively prime) to ''n'' from the set \ of ''n'' non-negative integers form a group under multiplication modulo ''n'', called the multiplicative group of integers modulo ''n''. Equivalently, the el ...
*
Additive group An additive group is a group of which the group operation is to be thought of as ''addition'' in some sense. It is usually abelian, and typically written using the symbol + for its binary operation. This terminology is widely used with structu ...


Notes


References

*
Michiel Hazewinkel Michiel Hazewinkel (born 22 June 1943) is a Dutch mathematician, and Emeritus Professor of Mathematics at the Centre for Mathematics and Computer Science and the University of Amsterdam, particularly known for his 1978 book ''Formal groups and a ...
, Nadiya Gubareni, Nadezhda Mikhaĭlovna Gubareni, Vladimir V. Kirichenko. ''Algebras, rings and modules''. Volume 1. 2004. Springer, 2004. {{DEFAULTSORT:Multiplicative Group Algebraic structures Group theory Field (mathematics)