HOME

TheInfoList



OR:

In
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, a graph manifold (in German: Graphenmannigfaltigkeit) is a
3-manifold In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds ...
which is obtained by gluing some
circle bundle In mathematics, a circle bundle is a fiber bundle where the fiber is the circle S^1. Oriented circle bundles are also known as principal ''U''(1)-bundles. In physics, circle bundles are the natural geometric setting for electromagnetism. A circl ...
s. They were discovered and classified by the German topologist
Friedhelm Waldhausen Friedhelm Waldhausen (born 1938 in Millich, Hückelhoven, Rhine Province) is a German mathematician known for his work in algebraic topology. He made fundamental contributions in the fields of 3-manifolds and (algebraic) K-theory. Career Wald ...
in 1967. This definition allows a very convenient combinatorial description as a graph whose vertices are the fundamental parts and (decorated) edges stand for the description of the gluing, hence the name. Two very important classes of examples are given by the Seifert bundles and the Solv manifolds. This leads to a more modern definition: a graph manifold is either a Solv manifold, a manifold having only Seifert pieces in its
JSJ decomposition In mathematics, the JSJ decomposition, also known as the toral decomposition, is a topological construct given by the following theorem: : Irreducible orientable closed (i.e., compact and without boundary) 3-manifolds have a unique (up to isoto ...
, or connect sums of the previous two categories. From this perspective, Waldhausen's article can be seen as the first breakthrough towards the discovery of JSJ decomposition. One of the numerous consequences of the Thurston-Perelman geometrization theorem is that graph manifolds are precisely the 3-manifolds whose Gromov norm vanishes.


References

* * 3-manifolds Topological graph theory {{topology-stub