Geometrization Conjecture
In mathematics, Thurston's geometrization conjecture (now a theorem) states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries ( Euclidean, spherical, or hyperbolic). In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the geometrization conjecture states that every closed 3-manifold can be decomposed in a canonical way into pieces that each have one of eight types of geometric structure. The conjecture was proposed by as part of his 24 questions, and implies several other conjectures, such as the Poincaré conjecture and Thurston's elliptization conjecture. Thurston's hyperbolization theorem implies that Haken manifolds satisfy the geometrization conjecture. Thurston ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Geometric Topology
In mathematics, geometric topology is the study of manifolds and Map (mathematics)#Maps as functions, maps between them, particularly embeddings of one manifold into another. History Geometric topology as an area distinct from algebraic topology may be said to have originated in the 1935 classification of lens spaces by Reidemeister torsion, which required distinguishing spaces that are homotopy equivalent but not homeomorphic. This was the origin of simple homotopy, ''simple'' homotopy theory. The use of the term geometric topology to describe these seems to have originated rather recently. Differences between low-dimensional and high-dimensional topology Manifolds differ radically in behavior in high and low dimension. High-dimensional topology refers to manifolds of dimension 5 and above, or in relative terms, embeddings in codimension 3 and above. Low-dimensional topology is concerned with questions in dimensions up to 4, or embeddings in codimension up to 2. Dimensio ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Thurston's 24 Questions
Thurston's 24 questions are a set of mathematical problems in differential geometry posed by American mathematician William Thurston in his influential 1982 paper ''Three-dimensional manifolds, Kleinian groups and hyperbolic geometry'' published in the ''Bulletin of the American Mathematical Society''. These questions significantly influenced the development of geometric topology and related fields over the following decades. History The questions appeared following Thurston's announcement of the geometrization conjecture, which proposed that all compact 3-manifolds could be decomposed into geometric pieces. This conjecture, later proven by Grigori Perelman in 2003, represented a complete classification of 3-manifolds and included the famous Poincaré conjecture as a special case. By 2012, 22 of Thurston's 24 questions had been resolved. Table of problems Thurston's 24 questions are: See also * Geometrization conjecture * Hilbert's problems * Taniyama's problems * List ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Connected Sum
In mathematics, specifically in topology, the operation of connected sum is a geometric modification on manifolds. Its effect is to join two given manifolds together near a chosen point on each. This construction plays a key role in the classification of closed surfaces. More generally, one can also join manifolds together along identical submanifolds; this generalization is often called the fiber sum. There is also a closely related notion of a connected sum on knots, called the knot sum or composition of knots. Connected sum at a point A connected sum of two ''m''-dimensional manifolds is a manifold formed by deleting a ball inside each manifold and gluing together the resulting boundary spheres. If both manifolds are oriented, there is a unique connected sum defined by having the gluing map reverse orientation. Although the construction uses the choice of the balls, the result is unique up to homeomorphism. One can also make this operation work in the smooth categor ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Prime Decomposition (3-manifold)
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pro ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a Neighbourhood (mathematics), neighborhood that is homeomorphic to an open (topology), open subset of n-dimensional Euclidean space. One-dimensional manifolds include Line (geometry), lines and circles, but not Lemniscate, self-crossing curves such as a figure 8. Two-dimensional manifolds are also called Surface (topology), surfaces. Examples include the Plane (geometry), plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces. One suc ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Closed Manifold
In mathematics, a closed manifold is a manifold Manifold with boundary, without boundary that is Compact space, compact. In comparison, an open manifold is a manifold without boundary that has only ''non-compact'' components. Examples The only Connected space, connected one-dimensional example is a circle. The sphere, torus, and the Klein bottle are all closed two-dimensional manifolds. The real projective space RP''n'' is a closed ''n''-dimensional manifold. The complex projective space CP''n'' is a closed 2''n''-dimensional manifold. A Real line, line is not closed because it is not compact. A closed disk is a compact two-dimensional manifold, but it is not closed because it has a boundary. Properties Every closed manifold is a Euclidean neighborhood retract and thus has finitely generated homology groups. If M is a closed connected n-manifold, the n-th homology group H_(M;\mathbb) is \mathbb or 0 depending on whether M is Orientability, orientable or not. Moreover, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Spherical Space Form Conjecture
In geometric topology, the spherical space form conjecture (now a theorem) states that a finite group acting on the 3-sphere is conjugate to a group of isometries of the 3-sphere. History The conjecture was posed by Heinz Hopf in 1926 after determining the fundamental groups of three-dimensional spherical space forms as a generalization of the Poincaré conjecture to the non-simply connected case. Status The conjecture is implied by Thurston's geometrization conjecture, which was proven by Grigori Perelman in 2003. The conjecture was independently proven for groups whose actions have fixed points—this special case is known as the Smith conjecture. It is also proven for various groups acting without fixed points, such as cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Clay Mathematics Institute
The Clay Mathematics Institute (CMI) is a private, non-profit foundation dedicated to increasing and disseminating mathematical knowledge. Formerly based in Peterborough, New Hampshire, the corporate address is now in Denver, Colorado. CMI's scientific activities are managed from the President's office in Oxford, United Kingdom. It gives out various awards and sponsorships to promising mathematicians. The institute was founded in 1998 through the sponsorship of Boston businessman Landon T. Clay. Harvard mathematician Arthur Jaffe was the first president of CMI. While the institute is best known for its Millennium Prize Problems, it carries out a wide range of activities, including conferences, workshops, summer schools, and a postdoctoral program supporting Clay Research Fellows. Governance The institute is run according to a standard structure comprising a scientific advisory committee that decides on grant-awarding and research proposals, and a board of directors that overs ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Fields Medal
The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of Mathematicians, International Congress of the International Mathematical Union (IMU), a meeting that takes place every four years. The name of the award honours the Canadian mathematician John Charles Fields. The Fields Medal is regarded as one of the highest honors a mathematician can receive, and has been list of prizes known as the Nobel or the highest honors of a field, described as the Nobel Prize of Mathematics, although there are several major differences, including frequency of award, number of awards, age limits, monetary value, and award criteria. According to the annual Academic Excellence Survey by Academic Ranking of World Universities, ARWU, the Fields Medal is consistently regarded as the top award in the field of mathematics worldwide, and in another reputation survey conducted by IREG Observatory on Academic Ranking and Excellence, IR ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Surgery Theory
In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique ''surgery'', while Andrew H. Wallace, Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold ''M'' of dimension n=p+q+1, could be described as removing an imbedded sphere of dimension ''p'' from ''M''. Originally developed for differentiable (or, differentiable manifolds, smooth) manifolds, surgery techniques also apply to piecewise linear manifold, piecewise linear (PL-) and topological manifolds. Surgery refers to cutting out parts of the manifold and replacing it with a part of another manifold, matching up along the cut or boundary. This is closely related to, but not identical with, handlebody decompositions. More technically, the idea is to start with a well-understood manifold ''M'' and perform surgery on it to pro ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Ricci Flow
In differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation. The Ricci flow, so named for the presence of the Ricci tensor in its definition, was introduced by Richard Hamilton, who used it through the 1980s to prove striking new results in Riemannian geometry. Later extensions of Hamilton's methods by various authors resulted in new applications to geometry, including the resolution of the differentiable sphere conjecture by Simon Brendle and Richard Schoen. Following the possibility that the singularities of solutions of the Ricci flow could identify the topological data predicted by William ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |