Graph Bandwidth
   HOME

TheInfoList



OR:

In
graph theory In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
, the graph bandwidth problem is to label the vertices of a
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discret ...
with distinct
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s so that the quantity \max\ is minimized ( is the edge set of ). The problem may be visualized as placing the vertices of a graph at distinct integer points along the ''x''-axis so that the length of the longest edge is minimized. Such placement is called linear graph arrangement, linear graph layout or linear graph placement. The weighted graph bandwidth problem is a
generalization A generalization is a form of abstraction whereby common properties of specific instances are formulated as general concepts or claims. Generalizations posit the existence of a domain or set of elements, as well as one or more common characteri ...
wherein the edges are assigned weights and the cost function to be minimized is \max\. In terms of matrices, the (unweighted) graph bandwidth is the minimal bandwidth of a
symmetric matrix In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, Because equal matrices have equal dimensions, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with ...
which is an
adjacency matrix In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph (discrete mathematics), graph. The elements of the matrix (mathematics), matrix indicate whether pairs of Vertex (graph theory), vertices ...
of the graph. The bandwidth may also be defined as one less than the maximum clique size in a proper interval supergraph of the given graph, chosen to minimize its clique size .


Cyclically interval graphs

For fixed k define for every i the set I_k(i) := [i, i+k+1). G_k(n) is the corresponding interval graph formed from the intervals I_k(1), I_k(2), ... I_k(n). These are exactly the proper interval graphs of graphs having bandwidth k. These graphs called be cyclically interval graphs because the intervals can be assigned to layers L_1, L_2, ... L_ in cyclically order, where the intervals of a layer doesn't intersect. Therefore, one see the relation to the
pathwidth In graph theory, a path decomposition of a graph is, informally, a representation of as a "thickened" path graph, and the pathwidth of is a number that measures how much the path was thickened to form . More formally, a path-decomposition ...
. Pathwidth restricted graphs are minor closed but the set of subgraphs of cyclically interval graphs are not. This follows from the fact, that thrinking degree 2 vertices may increase the bandwidth. Alternate adding vertices on edges can decrease the bandwidth. Hint: The last problem is known as topologic bandwidth. An other graph measure related through the bandwidth is the bisection bandwidth.


Bandwidth formulas for some graphs

For several families of graphs, the bandwidth \varphi(G) is given by an explicit formula. The bandwidth of a path graph ''P''''n'' on ''n'' vertices is 1, and for a complete graph ''K''''m'' we have \varphi(K_n)=n-1. For the
complete bipartite graph In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set..Electronic edition page 17. Graph theory ...
''K''''m'',''n'', :\varphi(K_) = \lfloor (m-1)/2\rfloor+n, assuming m \ge n\ge 1, which was proved by Chvátal. As a special case of this formula, the star graph S_k = K_ on ''k'' + 1 vertices has bandwidth \varphi(S_) = \lfloor (k-1)/2\rfloor+1. For the
hypercube graph In graph theory, the hypercube graph is the graph formed from the vertices and edges of an -dimensional hypercube. For instance, the cubical graph, cube graph is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. has ...
Q_n on 2^n vertices the bandwidth was determined by to be :\varphi(Q_n)=\sum_^ \binom. Chvatálová showed that the bandwidth of the ''m'' × ''n''
square grid graph In graph theory, a lattice graph, mesh graph, or grid graph is a Graph (discrete mathematics), graph whose graph drawing, drawing, Embedding, embedded in some Euclidean space , forms a regular tiling. This implies that the group (mathematics), g ...
P_m \times P_n, that is, the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
of two path graphs on m and n vertices, is equal to min.


Bounds

The bandwidth of a graph can be bounded in terms of various other graph parameters. For instance, letting χ(''G'') denote the
chromatic number In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color. Graph coloring i ...
of ''G'', : \varphi(G) \ge \chi(G) - 1; letting diam(''G'') denote the
diameter In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions a ...
of ''G'', the following inequalities hold: :\lceil (n-1)/\operatorname(G) \rceil \le \varphi(G) \le n - \operatorname(G), where n is the number of vertices in G. If a graph ''G'' has bandwidth ''k'', then its
pathwidth In graph theory, a path decomposition of a graph is, informally, a representation of as a "thickened" path graph, and the pathwidth of is a number that measures how much the path was thickened to form . More formally, a path-decomposition ...
is at most ''k'' , and its
tree-depth In graph theory, the tree-depth of a connected undirected graph G is a numerical invariant of G, the minimum height of a Trémaux tree for a supergraph of G. This invariant and its close relatives have gone under many different names in the lite ...
is at most ''k'' log(''n''/''k'') . In contrast, as noted in the previous section, the star graph ''S''''k'', a structurally very simple example of a
tree In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, e.g., including only woody plants with secondary growth, only ...
, has comparatively large bandwidth. Observe that the
pathwidth In graph theory, a path decomposition of a graph is, informally, a representation of as a "thickened" path graph, and the pathwidth of is a number that measures how much the path was thickened to form . More formally, a path-decomposition ...
of ''S''''k'' is 1, and its tree-depth is 2. Some graph families of bounded degree have sublinear bandwidth: proved that if ''T'' is a tree of maximum degree at most ∆, then :\varphi(T) \le \frac. More generally, for
planar graph In graph theory, a planar graph is a graph (discrete mathematics), graph that can be graph embedding, embedded in the plane (geometry), plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. ...
s of bounded maximum degree at most ''∆'', a similar bound holds (cf. ): :\varphi(G) \le \frac.


Computing the bandwidth

Both the unweighted and weighted versions are special cases of the quadratic bottleneck assignment problem. The bandwidth problem is
NP-hard In computational complexity theory, a computational problem ''H'' is called NP-hard if, for every problem ''L'' which can be solved in non-deterministic polynomial-time, there is a polynomial-time reduction from ''L'' to ''H''. That is, assumi ...
, even for some special cases.Garey–Johnson: GT40 Regarding the existence of efficient
approximation algorithm In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned sol ...
s, it is known that the bandwidth is NP-hard to approximate within any constant, and this even holds when the input graphs are restricted to
caterpillar tree In graph theory, a caterpillar or caterpillar tree is a tree (graph theory), tree in which all the Vertex (graph theory), vertices are within distance 1 of a central Path graph, path. Caterpillars were first studied in a series of papers by Har ...
s with maximum hair length 2 . For the case of dense graphs, a 3-approximation algorithm was designed by . On the other hand, a number of polynomially-solvable special cases are known."Coping with the NP-Hardness of the Graph Bandwidth Problem", Uriel Feige, ''
Lecture Notes in Computer Science ''Lecture Notes in Computer Science'' is a series of computer science books published by Springer Science+Business Media since 1973. Overview The series contains proceedings, post-proceedings, monographs, and Festschrifts. In addition, tutorials ...
'', Volume 1851, 2000, pp. 129-145,
A
heuristic A heuristic or heuristic technique (''problem solving'', '' mental shortcut'', ''rule of thumb'') is any approach to problem solving that employs a pragmatic method that is not fully optimized, perfected, or rationalized, but is nevertheless ...
algorithm for obtaining linear graph layouts of low bandwidth is the
Cuthill–McKee algorithm In numerical linear algebra, the Cuthill–McKee algorithm (CM), named after Elizabeth Cuthill and James McKee,E. Cuthill and J. McKeethe bandwidth of sparse symmetric matrices''In Proc. 24th Nat. Conf. Association for Computing Machinery, ACM, ...
. Fast multilevel algorithm for graph bandwidth computation was proposed in.


Applications

The interest in this problem comes from some application areas. One area is
sparse matrix In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse ...
/
band matrix In mathematics, particularly matrix theory, a band matrix or banded matrix is a sparse matrix whose non-zero entries are confined to a diagonal ''band'', comprising the main diagonal and zero or more diagonals on either side. Band matrix Bandwidt ...
handling, and general algorithms from this area, such as
Cuthill–McKee algorithm In numerical linear algebra, the Cuthill–McKee algorithm (CM), named after Elizabeth Cuthill and James McKee,E. Cuthill and J. McKeethe bandwidth of sparse symmetric matrices''In Proc. 24th Nat. Conf. Association for Computing Machinery, ACM, ...
, may be applied to find approximate solutions for the graph bandwidth problem. Another application domain is in
electronic design automation Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), is a category of software tools for designing Electronics, electronic systems such as integrated circuits and printed circuit boards. The tools wo ...
. In
standard cell In semiconductor design, standard-cell methodology is a method of designing application-specific integrated circuits (ASICs) with mostly digital-logic features. Standard-cell methodology is an example of design abstraction, whereby a low-level ...
design methodology, typically standard cells have the same height, and their
placement Placement may refer to: * Placement (EDA), an essential step in E-design automation * Placement exam, determines which class a student should take * Favored placement, the practice of preferentially listing search engine results for given sites ...
is arranged in a number of rows. In this context, graph bandwidth problem models the problem of placement of a set of standard cells in a single row with the goal of minimizing the maximal
propagation delay Propagation delay is the time duration taken for a signal to reach its destination, for example in the electromagnetic field, a wire, speed of sound, gas, fluid or seismic wave, solid body. Physics * An electromagnetic wave travelling through ...
(which is assumed to be proportional to wire length).


See also

*
Cutwidth In graph theory, the cutwidth of an undirected graph is the smallest integer k with the following property: there is an ordering of the vertices of the graph, such that every cut obtained by partitioning the vertices into earlier and later subset ...
and
pathwidth In graph theory, a path decomposition of a graph is, informally, a representation of as a "thickened" path graph, and the pathwidth of is a number that measures how much the path was thickened to form . More formally, a path-decomposition ...
, different NP-complete optimization problems involving linear layouts of graphs.


References

* * * * * * * * *{{Cite journal , last1 = Karpinski , first1 = Marek , last2 = Wirtgen , first2 = Jürgen , last3 = Zelikovsky , first3 = Aleksandr , title = An Approximation Algorithm for the Bandwidth Problem on Dense Graphs , journal = Electronic Colloquium on Computational Complexity , volume = 4 , number = 17 , year = 1997 , url = http://eccc.hpi-web.de/report/1997/017/


External links


Minimum bandwidth problem
in: Pierluigi Crescenzi and Viggo Kann (eds.), ''A compendium of NP optimization problems.'' Accessed May 26, 2010. Graph algorithms Combinatorial optimization NP-hard problems Graph invariants