The glyoxylate cycle, a variation of the
tricarboxylic acid cycle, is an
anabolic
Anabolism () is the set of metabolic pathways that construct macromolecules like DNA or RNA from smaller units. These reactions require energy, known also as an endergonic process. Anabolism is the building-up aspect of metabolism, whereas catab ...
pathway occurring in
plant
Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they are predominantly Photosynthesis, photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with c ...
s,
bacteria
Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
,
protist
A protist ( ) or protoctist is any eukaryotic organism that is not an animal, land plant, or fungus. Protists do not form a natural group, or clade, but are a paraphyletic grouping of all descendants of the last eukaryotic common ancest ...
s, and
fungi
A fungus (: fungi , , , or ; or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and mold (fungus), molds, as well as the more familiar mushrooms. These organisms are classified as one ...
. The
glyoxylate cycle centers on the conversion of
acetyl-CoA
Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidation, o ...
to
succinate for the synthesis of
carbohydrate
A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' ...
s.
In microorganisms, the glyoxylate cycle allows cells to use two carbons (C2 compounds), such as acetate, to satisfy cellular carbon requirements when simple sugars such as
glucose
Glucose is a sugar with the Chemical formula#Molecular formula, molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of carbohydrates. It is mainly made by plants and most algae d ...
or fructose are not available.
The cycle is generally assumed to be absent in animals, with the exception of
nematode
The nematodes ( or ; ; ), roundworms or eelworms constitute the phylum Nematoda. Species in the phylum inhabit a broad range of environments. Most species are free-living, feeding on microorganisms, but many are parasitic. Parasitic worms (h ...
s at the early stages of embryogenesis. In recent years, however, the detection of
malate synthase (MS) and
isocitrate lyase (ICL), key enzymes involved in the glyoxylate cycle, in some animal tissue has raised questions regarding the evolutionary relationship of enzymes in
bacteria
Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
and
animal
Animals are multicellular, eukaryotic organisms in the Biology, biological Kingdom (biology), kingdom Animalia (). With few exceptions, animals heterotroph, consume organic material, Cellular respiration#Aerobic respiration, breathe oxygen, ...
s and suggests that animals encode alternative enzymes of the cycle that differ in function from known MS and ICL in non-metazoan species.
Plants as well as some algae and bacteria can use acetate as the carbon source for the production of carbon compounds. Plants and bacteria employ a modification of the TCA cycle called the glyoxylate cycle to produce four carbon dicarboxylic acid from two carbon acetate units. The glyoxylate cycle bypasses the two oxidative decarboxylation reactions of the TCA cycle and directly converts isocitrate through isocitrate lyase and malate synthase into malate and succinate.
The glyoxylate cycle was discovered in 1957 at the
University of Oxford
The University of Oxford is a collegiate university, collegiate research university in Oxford, England. There is evidence of teaching as early as 1096, making it the oldest university in the English-speaking world and the List of oldest un ...
by
Sir Hans Kornberg and his mentor
Hans Krebs, resulting in a Nature paper ''Synthesis of Cell Constituents from C
2-Units by a Modified Tricarboxylic Acid Cycle''.
Similarities with TCA cycle
The glyoxylate cycle uses five of the eight enzymes associated with the
tricarboxylic acid cycle:
citrate synthase,
aconitase,
succinate dehydrogenase,
fumarase, and
malate dehydrogenase. The two cycles differ in that in the glyoxylate cycle,
isocitrate is converted into
glyoxylate and
succinate by isocitrate lyase (ICL) instead of into α-ketoglutarate.
This bypasses the decarboxylation steps that take place in the citric acid cycle (TCA cycle), allowing simple carbon compounds to be used in the later synthesis of macromolecules, including glucose.
Glyoxylate is subsequently combined with
acetyl-CoA
Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidation, o ...
to produce
malate
Malic acid is an organic compound with the molecular formula . It is a dicarboxylic acid that is made by all living organisms, contributes to the sour taste of fruits, and is used as a food additive. Malic acid has two stereoisomeric forms ( ...
, catalyzed by malate synthase.
Malate is also formed in parallel from succinate by the action of succinate dehydrogenase and fumarase.
Role in gluconeogenesis
Fatty acid
In chemistry, in particular in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated and unsaturated compounds#Organic chemistry, saturated or unsaturated. Most naturally occurring fatty acids have an ...
s from
lipid
Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing ...
s are commonly used as an energy source by vertebrates as fatty acids are degraded through
beta oxidation
In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA. Acetyl-CoA enter ...
into acetate molecules. This acetate, bound to the active
thiol group of
coenzyme A
Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the Fatty acid metabolism#Synthesis, synthesis and Fatty acid metabolism#.CE.B2-Oxidation, oxidation of fatty acids, and the oxidation of pyruvic acid, pyruvate in the citric ac ...
, enters the ''
citric acid cycle
The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle)—is a series of chemical reaction, biochemical reactions that release the energy stored in nutrients through acetyl-Co ...
'' (TCA cycle) where it is fully
oxidized
Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is ...
to
carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
. This pathway thus allows
cells to obtain
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
from fat. To use acetate from fat for biosynthesis of carbohydrates, the glyoxylate cycle, whose initial reactions are identical to the TCA cycle, is used.
Cell-wall containing organisms, such as
plant
Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they are predominantly Photosynthesis, photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with c ...
s,
fungi
A fungus (: fungi , , , or ; or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and mold (fungus), molds, as well as the more familiar mushrooms. These organisms are classified as one ...
, and
bacteria
Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
, require very large amounts of
carbohydrate
A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' ...
s during
growth for the biosynthesis of complex structural
polysaccharides
Polysaccharides (), or polycarbohydrates, are the most abundant carbohydrates found in food. They are long-chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with wat ...
, such as
cellulose
Cellulose is an organic compound with the chemical formula, formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of glycosidic bond, β(1→4) linked glucose, D-glucose units. Cellulose is an important s ...
,
glucans, and
chitin
Chitin (carbon, C8hydrogen, H13oxygen, O5nitrogen, N)n ( ) is a long-chain polymer of N-Acetylglucosamine, ''N''-acetylglucosamine, an amide derivative of glucose. Chitin is the second most abundant polysaccharide in nature (behind only cell ...
. In these organisms, in the absence of available carbohydrates (for example, in certain microbial environments or during
seed germination in plants), the glyoxylate cycle permits the synthesis of glucose from lipids via acetate generated in fatty acid β-oxidation.
The glyoxylate cycle bypasses the steps in the citric acid cycle where carbon is lost in the form of CO
2. The two initial steps of the glyoxylate cycle are identical to those in the citric acid cycle: ''acetate → citrate → isocitrate''. In the next step, catalyzed by the first glyoxylate cycle enzyme,
isocitrate lyase, isocitrate undergoes cleavage into
succinate and
glyoxylate (the latter gives the cycle its name). Glyoxylate condenses with acetyl-CoA (a step catalyzed by
malate synthase), yielding
malate
Malic acid is an organic compound with the molecular formula . It is a dicarboxylic acid that is made by all living organisms, contributes to the sour taste of fruits, and is used as a food additive. Malic acid has two stereoisomeric forms ( ...
. Both
malate
Malic acid is an organic compound with the molecular formula . It is a dicarboxylic acid that is made by all living organisms, contributes to the sour taste of fruits, and is used as a food additive. Malic acid has two stereoisomeric forms ( ...
and
oxaloacetate can be converted into
phosphoenolpyruvate
Phosphoenolpyruvate (2-phosphoenolpyruvate, PEP) is the carboxylic acid derived from the enol of pyruvate and a phosphate anion. It exists as an anion. PEP is an important intermediate in biochemistry. It has the high-energy phosphate, highest-e ...
, which is the product of
phosphoenolpyruvate carboxykinase, the first enzyme in
gluconeogenesis
Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In verte ...
. The net result of the glyoxylate cycle is therefore the production of glucose from fatty acids. Succinate generated in the first step can enter into the citric acid cycle to eventually form oxaloacetate.
Function in organisms
Plants
In plants the
glyoxylate cycle occurs in special
peroxisome
A peroxisome () is a membrane-bound organelle, a type of microbody, found in the cytoplasm of virtually all eukaryotic cells. Peroxisomes are oxidative organelles. Frequently, molecular oxygen serves as a co-substrate, from which hydrogen perox ...
s which are called
glyoxysomes. This cycle allows seeds to use lipids as a source of energy to form the shoot during
germination
Germination is the process by which an organism grows from a seed or spore. The term is applied to the sprouting of a seedling from a seed of an angiosperm or gymnosperm, the growth of a sporeling from a spore, such as the spores of fungi, ...
. The seed cannot produce biomass using photosynthesis because of lack of an organ to perform this function. The lipid stores of germinating seeds are used for the formation of the carbohydrates that fuel the growth and development of the organism.
The glyoxylate cycle can also provide plants with another aspect of metabolic diversity. This cycle allows plants to take in
acetate
An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic, or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called ...
both as a carbon source and as a source of energy. Acetate is converted to acetyl CoA (similar to the TCA cycle). This acetyl CoA can proceed through the glyoxylate cycle, and some succinate is released during the cycle. The four carbon succinate molecule can be transformed into a variety of carbohydrates through combinations of other metabolic processes; the plant can synthesize molecules using acetate as a source for carbon. The acetyl CoA can also react with glyoxylate to produce some NADPH from NADP+, which is used to drive energy synthesis in the form of ATP later in the
electron transport chain
An electron transport chain (ETC) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples th ...
.
Pathogenic fungi
The glyoxylate cycle may serve an entirely different purpose in some species of pathogenic
fungi
A fungus (: fungi , , , or ; or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and mold (fungus), molds, as well as the more familiar mushrooms. These organisms are classified as one ...
. The levels of the main enzymes of the glyoxylate cycle, ICL and MS, are greatly increased upon contact with a human host. Mutants of a particular species of fungi that lacked ICL were also significantly less
virulent in studies with mice compared to the wild type. The exact link between these two observations is still being explored, but it can be concluded that the glyoxylate cycle is a significant factor in the
pathogenesis of these
microbes
A microorganism, or microbe, is an organism of microscopic size, which may exist in its single-celled form or as a colony of cells. The possible existence of unseen microbial life was suspected from antiquity, with an early attestation in ...
.
Vertebrates
Vertebrates were once thought to be unable to perform this cycle because there was no evidence of its two key
enzyme
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s, isocitrate lyase and malate synthase. However, some research suggests that this pathway may exist in some, if not all, vertebrates.
Specifically, some studies show evidence of components of the glyoxylate cycle existing in significant amounts in the liver tissue of chickens. Data such as these support the idea that the cycle could theoretically occur in even the most complex vertebrates.
Other experiments have also provided evidence that the cycle is present among certain insect and marine invertebrate species, as well as strong evidence of the cycle's presence in nematode species. However, other experiments refute this claim. Some publications conflict on the presence of the cycle in
mammal
A mammal () is a vertebrate animal of the Class (biology), class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three ...
s: for example, one paper has stated that the glyoxylate cycle is active in hibernating bears, but this report was disputed in a later paper. Evidence exists for malate synthase activity in humans due to a dual functional malate/B-methylmalate synthase of mitochondrial origin called CLYBL expressed in brown fat and kidney. Vitamin D may regulate this pathway in vertebrates.
Inhibition of the glyoxylate cycle
Due to the central role of the
glyoxylate cycle in the metabolism of pathogenic species including fungi and bacteria, enzymes of the glyoxylate cycle are current inhibition targets for the treatment of diseases. Most reported inhibitors of the glyoxylate cycle target the first enzyme of the cycle (ICL). Inhibitors were reported for ''Candida albicans'' for potential use as antifungal agents.
The mycobacterial glyoxylate cycle is also being targeted for potential treatments of
tuberculosis
Tuberculosis (TB), also known colloquially as the "white death", or historically as consumption, is a contagious disease usually caused by ''Mycobacterium tuberculosis'' (MTB) bacteria. Tuberculosis generally affects the lungs, but it can al ...
.
Engineering concepts
The prospect of engineering various
metabolic pathways
In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell. The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical ...
into
mammals
A mammal () is a vertebrate animal of the class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three middle e ...
which do not possess them is a topic of great interest for bio-engineers today. The glyoxylate cycle is one of the pathways which engineers have attempted to manipulate into mammalian cells. This is primarily of interest for engineers in order to increase the production of wool in sheep, which is limited by the access to stores of glucose. By introducing the pathway into sheep, the large stores of acetate in cells could be used in order to synthesize
glucose
Glucose is a sugar with the Chemical formula#Molecular formula, molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of carbohydrates. It is mainly made by plants and most algae d ...
through the cycle, allowing for increased production of wool.
Mammals
A mammal () is a vertebrate animal of the class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three middle e ...
are incapable of executing the pathway due to the lack of two enzymes,
isocitrate lyase and
malate synthase, which are needed in order for the cycle to take place. It is believed by some that the genes to produce these enzymes, however, are
pseudogenic in mammals, meaning that the gene is not necessarily absent, rather, it is merely "turned off".
In order to engineer the pathway into cells, the genes responsible for coding for the enzymes had to be isolated and sequenced, which was done using the bacteria ''E.coli'', from which the AceA gene, responsible for encoding for
isocitrate lyase, and the AceB gene, responsible for encoding for
malate
Malic acid is an organic compound with the molecular formula . It is a dicarboxylic acid that is made by all living organisms, contributes to the sour taste of fruits, and is used as a food additive. Malic acid has two stereoisomeric forms ( ...
synthase were sequenced.
Engineers have been able to successfully incorporate the AceA and AceB genes into mammalian cells in culture, and the cells were successful in translating and transcribing the genes into the appropriate enzymes, proving that the genes could successfully be incorporated into the cell’s DNA without damaging the functionality or health of the cell. However, being able to engineer the pathway into transgenic mice has proven to be difficult for engineers. While the DNA has been expressed in some tissues, including the liver and small intestine in test animals, the level of expression is not high, and not found to be statistically significant. In order to successfully engineer the pathway, engineers would have to fuse the gene with promoters which could be regulated in order to increase the level of expression, and have the expression in the right cells, such as
epithelial cells.
Efforts to engineer the pathway into more complex animals, such as sheep, have not been effective. This illustrates that much more research needs to be done on the topic, and suggests it is possible that a high expression of the cycle in animals would not be tolerated by the chemistry of the cell. Incorporating the cycle into mammals will benefit from advances in
nuclear transfer technology, which will enable engineers to examine and access the pathway for functional integration within the genome before its transfer to animals.
There are possible benefits, however, to the cycle's absence in mammalian cells. The cycle is present in
microorganisms
A microorganism, or microbe, is an organism of microscopic size, which may exist in its single-celled form or as a colony of cells. The possible existence of unseen microbial life was suspected from antiquity, with an early attestation in ...
that cause disease but is absent in mammals, for example humans. There is a strong
plausibility of the development of antibiotics that would attack the
glyoxylate cycle, which would kill the disease-causing microorganisms that depend on the cycle for their survival, yet would not harm humans where the cycle, and thus the enzymes that the antibiotic would target, are absent.
See also
*
Citric acid cycle
The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle)—is a series of chemical reaction, biochemical reactions that release the energy stored in nutrients through acetyl-Co ...
(Tricarboxylic acid cycle)
References
External links
Comparative Analysis of Glyoxylate Cycle Key Enzyme Isocitrate Lyase from Organisms of Different Systematic Groups
{{DEFAULTSORT:Glyoxylate Cycle
Biochemical reactions
Carbohydrate metabolism
Metabolic pathways