Glycine Cleavage System
   HOME

TheInfoList



OR:

The glycine cleavage system (GCS) is also known as the glycine decarboxylase complex or GDC. The system is a series of enzymes that are triggered in response to high concentrations of the amino acid
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid. Glycine is one of the proteinogenic amino acids. It is encoded by all the codons starting with GG (G ...
. The same set of enzymes is sometimes referred to as glycine synthase when it runs in the reverse direction to form glycine. The glycine cleavage system is composed of four proteins: the T-protein, P-protein, L-protein, and H-protein. They do not form a stable complex, so it is more appropriate to call it a "system" instead of a "complex". The H-protein is responsible for interacting with the three other proteins and acts as a shuttle for some of the intermediate products in glycine decarboxylation. In both animals and plants, the glycine cleavage system is loosely attached to the inner membrane of the mitochondria. Mutations in this enzymatic system are linked with
glycine encephalopathy Glycine encephalopathy is a rare autosomal recessive disorder of glycine metabolism. After phenylketonuria, glycine encephalopathy is the second most common disorder of amino acid metabolism. The disease is caused by defects in the glycine cleav ...
.


Components


Function

In plants, animals and bacteria the glycine cleavage system catalyzes the following reversible reaction: : Glycine + H4folate + NAD+ ↔ 5,10-methylene-H4folate + CO2 + NH3 + NADH + H+ In the enzymatic reaction, H-protein activates the P-protein, which catalyzes the
decarboxylation Decarboxylation is a chemical reaction that removes a carboxyl group and releases carbon dioxide (CO2). Usually, decarboxylation refers to a reaction of carboxylic acids, removing a carbon atom from a carbon chain. The reverse process, which is ...
of glycine and attaches the intermediate molecule to the H-protein to be shuttled to the T-protein. The H-protein forms a complex with the T-protein that uses
tetrahydrofolate Tetrahydrofolic acid (THFA), or tetrahydrofolate, is a folic acid derivative. Metabolism In humans, tetrahydrofolic acid is produced from dihydrofolic acid by dihydrofolate reductase. This reaction is inhibited by methotrexate. It is convert ...
and yields
ammonia Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
and
5,10-methylenetetrahydrofolate 5,10-Methylenetetrahydrofolate (N5,N10-Methylenetetrahydrofolate; 5,10-CH2-THF) is cofactor in several biochemical reactions. It exists in nature as the diastereoisomer R5,10-methylene-THF. As an intermediate in one-carbon metabolism, 5,10-CH ...
. After interaction with the T-protein, the H-protein is left with two fully reduced
thiol In organic chemistry, a thiol (; ), or thiol derivative, is any organosulfur compound of the form , where R represents an alkyl or other organic substituent. The functional group itself is referred to as either a thiol group or a sulfhydryl grou ...
groups in the
lipoate Lipoic acid (LA), also known as α-lipoic acid, alpha-lipoic acid (ALA) and thioctic acid, is an organosulfur compound derived from caprylic acid (octanoic acid). ALA, which is made in animals normally, is essential for aerobic metabolism. It i ...
group. The glycine protein system is regenerated when the H-protein is oxidized to regenerate the disulfide bond in the active site by interaction with the L-protein, which reduces NAD+ to NADH and H+. When coupled to serine hydroxymethyltransferase, the glycine cleavage system overall reaction becomes: : 2 glycine + NAD+ + H2O → serine + CO2 + NH3 + NADH + H+ In humans and most vertebrates, the glycine cleavage system is part of the most prominent glycine and serine catabolism pathway. This is due in large part to the formation
5,10-methylenetetrahydrofolate 5,10-Methylenetetrahydrofolate (N5,N10-Methylenetetrahydrofolate; 5,10-CH2-THF) is cofactor in several biochemical reactions. It exists in nature as the diastereoisomer R5,10-methylene-THF. As an intermediate in one-carbon metabolism, 5,10-CH ...
, which is one of the few C1 donors in biosynthesis. In this case the methyl group derived from the catabolism of glycine can be transferred to other key molecules such as
purines Purine is a heterocyclic compound, heterocyclic aromatic organic compound that consists of two rings (pyrimidine and imidazole) fused together. It is water-soluble. Purine also gives its name to the wider class of molecules, purines, which inc ...
and
methionine Methionine (symbol Met or M) () is an essential amino acid in humans. As the precursor of other non-essential amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine play ...
. This reaction, and by extension the glycine cleavage system, is required for
photorespiration Photorespiration (also known as the oxidative photosynthetic carbon cycle or C2 cycle) refers to a process in plant physiology, plant metabolism where the enzyme RuBisCO oxygenates RuBP, wasting some of the energy produced by photosynthesis. Th ...
in C3 plants. The glycine cleavage system takes glycine, which is created from an unwanted byproduct of the
Calvin cycle The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into ...
, and converts it to
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − ...
which can reenter the cycle. The ammonia generated by the glycine cleavage system, is assimilated by the
Glutamine synthetase Glutamine synthetase (GS) () is an enzyme that catalyzes the condensation of glutamate and ammonia to form glutamine: Glutamate + ATP + NH3 → Glutamine + ADP + phosphate Glutamine synthetase uses ammonia produced by nitrate reduction ...
-
Glutamine oxoglutarate aminotransferase Glutamate synthase (also known as Glutamine oxoglutarate aminotransferase) is an enzyme and frequently abbreviated as GOGAT. This enzyme manufactures glutamate from glutamine and α-ketoglutarate, and thus along with glutamine synthetase (abbreviat ...
cycle but costs the cell one ATP and one
NADPH Nicotinamide adenine dinucleotide phosphate, abbreviated NADP or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require N ...
. The upside is that one CO2 is produced for every two O2 that are mistakenly taken up by the cell, generating some value in an otherwise energy depleting cycle. Together the proteins involved in these reactions comprise about half the proteins in
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
from
spinach Spinach (''Spinacia oleracea'') is a leafy green flowering plant native to Central Asia, Central and Western Asia. It is of the order Caryophyllales, family Amaranthaceae, subfamily Chenopodioideae. Its leaves are a common vegetable consumed eit ...
and
pea Pea (''pisum'' in Latin) is a pulse or fodder crop, but the word often refers to the seed or sometimes the pod of this flowering plant species. Peas are eaten as a vegetable. Carl Linnaeus gave the species the scientific name ''Pisum sativum' ...
leaves A leaf (: leaves) is a principal appendage of the stem of a vascular plant, usually borne laterally above ground and specialized for photosynthesis. Leaves are collectively called foliage, as in "autumn foliage", while the leaves, stem, ...
. The glycine cleavage system is constantly present in the leaves of plants, but in small amounts until they are exposed to light. During peak photosynthesis, the concentration of the glycine cleavage system increases ten-fold. In the anaerobic bacteria, ''Clostridium acidiurici'', the glycine cleavage system runs mostly in the direction of glycine synthesis. While glycine synthesis through the cleavage system is possible due to the reversibility of the overall reaction, it is not readily seen in animals.


Clinical significance

Glycine encephalopathy Glycine encephalopathy is a rare autosomal recessive disorder of glycine metabolism. After phenylketonuria, glycine encephalopathy is the second most common disorder of amino acid metabolism. The disease is caused by defects in the glycine cleav ...
, also known as non-ketotic hyperglycinemia (NKH), is a primary disorder of the glycine cleavage system, resulting from lowered function of the glycine cleavage system causing increased levels of glycine in body fluids. The disease was first clinically linked to the glycine cleavage system in 1969. Early studies showed high levels of glycine in blood, urine and cerebrospinal fluid. Initial research using
carbon label Carbon label is a form of isotopic labeling where a carbon-12 atom is replaced with either a stable carbon-13 atom or radioactive carbon-11 or carbon-14 atoms in a chemical compound so as to 'tag' (i.e. label) that position of the compound to a ...
ing showed decreased levels of CO2 and serine production in the liver, pointing directly to deficiencies glycine cleavage reaction. Further research has shown that deletions and mutations in the 5' region of the P-protein are the major genetic causes of nonketotic hyperglycinemia. . In more rare cases, a missense mutation in the genetic code of the T-protein, causing the
histidine Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an Amine, α-amino group (which is in the protonated –NH3+ form under Physiological condition, biological conditions), a carboxylic ...
in position 42 to be mutated to
arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidinium, guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) a ...
, was also found to result in nonketotic hypergycinemia. This specific mutation directly affected the active site of the T-protein, causing lowered efficiency of the glycine cleavage system.


See also

* dihydrolipoamide dehydrogenase *
lipoic acid Lipoic acid (LA), also known as α-lipoic acid, alpha-lipoic acid (ALA) and thioctic acid, is an organosulfur compound derived from caprylic acid (octanoic acid). ALA, which is made in animals normally, is essential for aerobic metabolism. It i ...
*
glycine encephalopathy Glycine encephalopathy is a rare autosomal recessive disorder of glycine metabolism. After phenylketonuria, glycine encephalopathy is the second most common disorder of amino acid metabolism. The disease is caused by defects in the glycine cleav ...


References

{{Amino acid metabolism enzymes Cellular respiration NADH-dependent enzymes Enzymes of unknown structure it:Glicina deidrogenasi