Glutathione ''S''-transferases (GSTs), previously known as ligandins, are a family of
eukaryotic
The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
and
prokaryotic
A prokaryote (; less commonly spelled procaryote) is a single-celled organism whose cell lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Ancient Greek (), meaning 'before', and (), meaning 'nut' ...
isozyme
In biochemistry, isozymes (also known as isoenzymes or more generally as multiple forms of enzymes) are enzymes that differ in amino acid sequence but catalyze the same chemical reaction. Isozymes usually have different kinetic parameters (e.g. di ...
s best known for their ability to
catalyze
Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
the conjugation of the reduced form of
glutathione
Glutathione (GSH, ) is an organic compound with the chemical formula . It is an antioxidant in plants, animals, fungi, and some bacteria and archaea. Glutathione is capable of preventing damage to important cellular components caused by sources ...
(GSH) to
xenobiotic
A xenobiotic is a chemical substance found within an organism that is not naturally produced or expected to be present within the organism. It can also cover substances that are present in much higher concentrations than are usual. Natural compo ...
substrate
Substrate may refer to:
Physical layers
*Substrate (biology), the natural environment in which an organism lives, or the surface or medium on which an organism grows or is attached
** Substrate (aquatic environment), the earthy material that exi ...
s for the purpose of detoxification. The GST family consists of three superfamilies: the
cytosol
The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
ic,
mitochondria
A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
l, and
microsomal
In cell biology, microsomes are heterogeneous vesicle-like artifacts (~20-200 nm diameter) re-formed from pieces of the endoplasmic reticulum (ER) when eukaryotic cells are broken-up in the laboratory; microsomes are not present in healthy, l ...
—also known as
MAPEG
In molecular biology the MAPEG (Membrane-Associated Proteins in Eicosanoid and Glutathione metabolism) family of proteins are a group of membrane associated proteins with highly divergent functions. Included are the 5-lipoxygenase-activating prote ...
—
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s. Members of the GST superfamily are extremely diverse in
amino acid sequence
Protein primary structure is the linear sequence of amino acids in a peptide or protein. By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end. Protein biosynthe ...
, and a large fraction of the sequences deposited in public databases are of unknown function. The
Enzyme Function Initiative
The Enzyme Function Initiative (EFI) is a large-scale collaborative project aiming to develop and disseminate a robust strategy to determine enzyme function through an integrated sequence–structure-based approach. The project was funded in May ...
(EFI) is using GSTs as a model superfamily to identify new GST functions.
GSTs can constitute up to 10% of cytosolic protein in some mammalian organs. GSTs catalyse the conjugation of GSH—via a sulfhydryl group—to electrophilic centers on a wide variety of substrates in order to make the compounds more water-soluble. This activity detoxifies endogenous compounds such as peroxidised lipids and enables the breakdown of xenobiotics. GSTs may also bind toxins and function as transport proteins, which gave rise to the early term for GSTs, ''ligandin''.
Classification
Protein sequence and structure are important additional classification criteria for the three superfamilies (cytosolic, mitochondrial, and MAPEG) of GSTs: while classes from the cytosolic superfamily of GSTs possess more than 40%
sequence homology
Sequence homology is the homology (biology), biological homology between DNA sequence, DNA, RNA sequence, RNA, or Protein primary structure, protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments ...
, those from other classes may have less than 25%. Cytosolic GSTs are divided into 13 classes based upon their structure: alpha, beta, delta, epsilon, zeta, theta, mu, nu, pi, sigma, tau, phi, and omega. Mitochondrial GSTs are in class kappa. The MAPEG superfamily of microsomal GSTs consists of subgroups designated I-IV, between which
amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
sequences share less than 20% identity. Human cytosolic GSTs belong to the alpha, zeta, theta, mu, pi, sigma, and omega classes, while six isozymes belonging to classes I, II, and IV of the MAPEG superfamily are known to exist.
Nomenclature
Standardized GST nomenclature first proposed in 1992 identifies the species to which the isozyme of interest belongs with a lower-case initial (e.g., "h" for human), which precedes the abbreviation GST. The isozyme class is subsequently identified with an upper-case letter (e.g., "A" for alpha), followed by an Arabic numeral representing the class
subfamily
In biological classification, a subfamily (Latin: ', plural ') is an auxiliary (intermediate) taxonomic rank, next below family but more inclusive than genus. Standard nomenclature rules end botanical subfamily names with "-oideae", and zo ...
(or subunit). Because both mitochondrial and cytosolic GSTs exist as dimers, and only heterodimers form between members of the same class, the second subfamily component of the enzyme dimer is denoted with a hyphen, followed by an additional Arabic numeral. Therefore, if a human glutathione ''S''-transferase is a homodimer in the pi-class subfamily 1, its name will be written as "hGSTP1-1."
The early nomenclature for GSTs referred to them as Y proteins, referring to their separation in the Y fraction (as opposed to the "X and Z" fractions) using Sephadex G75 chromatography. As GST sub-units were identified they were referred to as Ya, Yp, etc. with if necessary, a number identifying the monomer isoform (e.g. Yb1). Litwack ''et al'' proposed the term ''Ligandin'' to cover the proteins previously known as Y proteins.
In clinical chemistry and toxicology, the terms alpha GST, mu GST, and pi GST are most commonly used.
Structure
The glutathione binding site, or "G-site", is located in the
thioredoxin
Thioredoxin (TRX or TXN) is a class of small redox proteins known to be present in all organisms. It plays a role in many important biological processes, including redox signaling. In humans, thioredoxins are encoded by ''TXN'' and ''TXN2'' genes ...
-like domain of both cytosolic and mitochondrial GSTs. The region containing the greatest amount of variability between the assorted classes is that of helix α2, where one of three different amino acid residues interacts with the
glycine
Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid. Glycine is one of the proteinogenic amino acids. It is encoded by all the codons starting with GG (G ...
residue of glutathione. Two subgroups of cytosolic GSTs have been characterized based upon their interaction with glutathione: the Y-GST group, which uses a
tyrosine
-Tyrosine or tyrosine (symbol Tyr or Y) or 4-hydroxyphenylalanine is one of the 20 standard amino acids that are used by cells to synthesize proteins. It is a conditionally essential amino acid with a polar side group. The word "tyrosine" is ...
residue to activate glutathione, and the S/C-GST, which instead uses
serine
Serine
(symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − ...
or
cysteine
Cysteine (; symbol Cys or C) is a semiessential proteinogenic amino acid with the chemical formula, formula . The thiol side chain in cysteine enables the formation of Disulfide, disulfide bonds, and often participates in enzymatic reactions as ...
residues.
:GST proteins are globular proteins with an ''N''-terminal mixed helical and beta-strand domain and an all-helical ''C''-terminal domain.
The
porcine
The pig (''Sus domesticus''), also called swine (: swine) or hog, is an omnivorous, domesticated, even-toed, hoofed mammal. It is named the domestic pig when distinguishing it from other members of the genus '' Sus''. Some authorities consid ...
pi-class enzyme pGTSP1-1 was the first GST to have its structure determined, and it is representative of other members of the cytosolic GST superfamily, which contain a thioredoxin-like''N''-terminal domain as well as a ''C''-terminal domain consisting of
alpha helices
An alpha helix (or α-helix) is a sequence of amino acids in a protein that are twisted into a coil (a helix).
The alpha helix is the most common structural arrangement in the secondary structure of proteins. It is also the most extreme type of l ...
.
Mammal
A mammal () is a vertebrate animal of the Class (biology), class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three ...
ian cytosolic GSTs are dimeric, with both subunits being from the same class of GSTs, although not necessarily identical. The
monomer
A monomer ( ; ''mono-'', "one" + '' -mer'', "part") is a molecule that can react together with other monomer molecules to form a larger polymer chain or two- or three-dimensional network in a process called polymerization.
Classification
Chemis ...
s are approximately 25 kDa in size. They are active over a wide variety of substrates with considerable overlap. The following table lists all GST enzymes of each class known to exist in ''Homo sapiens'', as found in the UniProtKB/Swiss-Prot database.
Evolution
Environmental challenge by natural toxins helped to prepare ''
Drosophila
''Drosophila'' (), from Ancient Greek δρόσος (''drósos''), meaning "dew", and φίλος (''phílos''), meaning "loving", is a genus of fly, belonging to the family Drosophilidae, whose members are often called "small fruit flies" or p ...
e'' for
DDT
Dichlorodiphenyltrichloroethane, commonly known as DDT, is a colorless, tasteless, and almost odorless crystalline chemical compound, an organochloride. Originally developed as an insecticide, it became infamous for its environmental impacts. ...
challenge, by shaping the evolution of ''Drosophila'' GST - which metabolizes both.
glutathione synthetase
Glutathione synthetase (GSS) () is the second enzyme in the glutathione (GSH) biosynthesis pathway. It catalyses the condensation of gamma-glutamylcysteine and glycine, to form glutathione. Glutathione synthetase is also a potent antioxidan ...
, as well as the action of specific transporters to remove conjugates of GSH from the cell. The primary role of GSTs is to detoxify xenobiotics by catalyzing the
nucleophilic attack
In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they a ...
by GSH on electrophilic carbon, sulfur, or nitrogen atoms of said nonpolar xenobiotic substrates, thereby preventing their interaction with crucial cellular proteins and nucleic acids. Specifically, the function of GSTs in this role is twofold: to bind both the substrate at the enzyme's hydrophobic ''H''-site and GSH at the adjacent, hydrophilic G-site, which together form the
active site
In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate, the ''binding s ...
of the enzyme; and subsequently to activate the
thiol
In organic chemistry, a thiol (; ), or thiol derivative, is any organosulfur compound of the form , where R represents an alkyl or other organic substituent. The functional group itself is referred to as either a thiol group or a sulfhydryl grou ...
group of GSH, enabling the nucleophilic attack upon the substrate. The glutathione molecule binds in a cleft between ''N''- and ''C''-terminal domains - the catalytically important residues are proposed to reside in the ''N''-terminal domain. Both subunits of the GST dimer, whether hetero- or homodimeric in nature, contain a single nonsubstrate binding site, as well as a GSH-binding site. In heterodimeric GST complexes such as those formed by the cytosolic mu and alpha classes, however, the cleft between the two subunits is home to an additional high-affinity nonsubstrate xenobiotic binding site, which may account for the enzymes' ability to form heterodimers.
The compounds targeted in this manner by GSTs encompass a diverse range of environmental or otherwise exogenous toxins, including chemotherapeutic agents and other drugs, pesticides, herbicides, carcinogens, and variably-derived epoxides; indeed, GSTs are responsible for the conjugation of β1-8,9-epoxide, a reactive intermediate formed from aflatoxin B1, which is a crucial means of protection against the toxin in rodents. The detoxification reactions comprise the first four steps of
mercapturic acid
Mercapturic acids are condensation products formed from the coupling of cysteine with aromatic compounds. with the conjugation to GSH serving to make the substrates more soluble and allowing them to be removed from the cell by transporters such as multidrug resistance-associated protein 1 (
MRP1
Multidrug resistance-associated protein 1 (MRP1) is a protein that in humans is encoded by the ''ABCC1'' gene.
Function
The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins t ...
). After export, the conjugation products are converted into mercapturic acids and excreted via the
urine
Urine is a liquid by-product of metabolism in humans and many other animals. In placental mammals, urine flows from the Kidney (vertebrates), kidneys through the ureters to the urinary bladder and exits the urethra through the penile meatus (mal ...
or
bile
Bile (from Latin ''bilis''), also known as gall, is a yellow-green/misty green fluid produced by the liver of most vertebrates that aids the digestion of lipids in the small intestine. In humans, bile is primarily composed of water, is pro ...
.
Most mammalian isoenzymes have affinity for the substrate
1-chloro-2,4-dinitrobenzene
2,4-Dinitrochlorobenzene (DNCB) is an organic compound with the chemical formula (O2N)2C6H3Cl. It is a yellow solid that is soluble in organic solvents. It is an intermediate for the industrial production of other compounds.
Preparation and reac ...
, and spectrophotometric assays utilising this substrate are commonly used to report GST activity. However, some endogenous compounds, e.g., bilirubin, can inhibit the activity of GSTs. In mammals, GST isoforms have cell specific distributions (for example, α-GST in hepatocytes and π-GST in the biliary tract of the human liver).
GSTs have a role in the bioactivation process of
clopidogrel
Clopidogrel, sold under the brand name Plavix among others, is an antiplatelet drug, antiplatelet medication used to reduce the risk of Cardiovascular disease, heart disease and stroke in those at high risk. It is also used together with aspi ...
prodrug.
Role in cell signaling
Although best known for their ability to conjugate xenobiotics to GSH and thereby detoxify cellular environments, GSTs are also capable of binding nonsubstrate
ligands
In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's ...
, with important
cell signaling
In biology, cell signaling (cell signalling in British English) is the Biological process, process by which a Cell (biology), cell interacts with itself, other cells, and the environment. Cell signaling is a fundamental property of all Cell (biol ...
implications. Several GST isozymes from various classes have been shown to inhibit the function of a
kinase
In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
involved in the
MAPK pathway
A mitogen-activated protein kinase (MAPK or MAP kinase) is a type of serine/threonine-specific protein kinases involved in directing cellular responses to a diverse array of stimuli, such as mitogens, osmotic stress, heat shock and proinflammato ...
that regulates
cell proliferation
Cell proliferation is the process by which ''a cell grows and divides to produce two daughter cells''. Cell proliferation leads to an exponential increase in cell number and is therefore a rapid mechanism of tissue growth. Cell proliferation ...
and
death
Death is the end of life; the irreversible cessation of all biological functions that sustain a living organism. Death eventually and inevitably occurs in all organisms. The remains of a former organism normally begin to decompose sh ...
, preventing the kinase from carrying out its role in facilitating the signaling cascade.
Cytosolic GSTP1-1, a well-characterized isozyme of the mammalian GST family, is expressed primarily in heart, lung, and brain tissues; in fact, it is the most common GST expressed outside the liver. Based on its overexpression in a majority of human tumor cell lines and prevalence in chemotherapeutic-resistant tumors, GSTP1-1 is thought to play a role in the development of cancer and its potential resistance to drug treatment. Further evidence for this comes from the knowledge that GSTP can selectively inhibit ''C''-Jun phosphorylation by
JNK
c-Jun N-terminal kinases (JNKs), were originally identified as kinases that bind and phosphorylate c-Jun on Ser-63 and Ser-73 within its transcriptional activation domain. They belong to the mitogen-activated protein kinase family, and are r ...
, preventing apoptosis. During times of low cellular stress, a complex forms through direct
protein–protein interaction
Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and t ...
s between GSTP and the ''C''-terminus of JNK, effectively preventing the action of JNK and thus its induction of the JNK pathway. Cellular
oxidative stress
Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...
causes the dissociation of the complex, oligomerization of GSTP, and induction of the JNK pathway, resulting in
apoptosis
Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
. The connection between GSTP inhibition of the pro-apoptotic JNK pathway and the isozyme's overexpression in drug-resistant tumor cells may itself account for the tumor cells' ability to escape apoptosis mediated by drugs that are not substrates of GSTP.
Like GSTP,
GSTM1
Glutathione ''S''-transferase Mu 1 (gene name GSTM1) is a human glutathione ''S''-transferase.
Function
Cytosolic and membrane-bound forms of glutathione ''S''-transferase are encoded by two distinct supergene families. At present, eight dist ...
is involved in regulating apoptotic pathways through direct protein–protein interactions, although it acts on
ASK1
Apoptosis signal-regulating kinase 1 (ASK1) also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5) is a member of MAP kinase family and as such a part of mitogen-activated protein kinase pathway. It activates c-Jun N-terminal kin ...
, which is upstream of JNK. The mechanism and result are similar to that of GSTP and JNK, in that GSTM1 sequesters ASK1 through complex formation and prevents its induction of the pro-apoptotic p38 and JNK portions of the MAPK signaling cascade. Like GSTP, GSTM1 interacts with its partner in the absence of oxidative stress, although ASK1 is also involved in
heat shock
The heat shock response (HSR) is a cell stress response that increases the number of molecular chaperones to combat the negative effects on proteins caused by stressors such as increased temperatures, oxidative stress, and heavy metals. In a norm ...
response, which is likewise prevented during ASK1 sequestration. The fact that high levels of GST are associated with resistance to apoptosis induced by a range of substances, including chemotherapeutic agents, supports its putative role in MAPK signaling prevention.
Implications in cancer development
There is a growing body of evidence supporting the role of GST, particularly GSTP, in cancer development and chemotherapeutic resistance. The link between GSTP and cancer is most obvious in the overexpression of GSTP in many cancers, but it is also supported by the fact that the transformed phenotype of tumor cells is associated with aberrantly regulated kinase signaling pathways and cellular addiction to overexpressed proteins. That most anti-cancer drugs are poor substrates for GSTP indicates that the role of elevated GSTP in many tumor cell lines is not to detoxify the compounds, but must have another purpose; this hypothesis is also given credence by the common finding of GSTP overexpression in tumor cell lines that are not drug resistant.
Clinical significance
In addition to their roles in cancer development and chemotherapeutic drug resistance, GSTs are implicated in a variety of diseases by virtue of their involvement with GSH. Although the evidence is minimal for the influence of GST polymorphisms of the alpha, mu, pi, and theta classes on susceptibility to various types of cancer, numerous studies have implicated such genotypic variations in
asthma
Asthma is a common long-term inflammatory disease of the airways of the lungs. It is characterized by variable and recurring symptoms, reversible airflow obstruction, and easily triggered bronchospasms. Symptoms include episodes of wh ...
,
atherosclerosis
Atherosclerosis is a pattern of the disease arteriosclerosis, characterized by development of abnormalities called lesions in walls of arteries. This is a chronic inflammatory disease involving many different cell types and is driven by eleva ...
,
allergies
Allergies, also known as allergic diseases, are various conditions caused by hypersensitivity of the immune system to typically harmless substances in the environment. These diseases include Allergic rhinitis, hay fever, Food allergy, food al ...
diabetes
Diabetes mellitus, commonly known as diabetes, is a group of common endocrine diseases characterized by sustained high blood sugar levels. Diabetes is due to either the pancreas not producing enough of the hormone insulin, or the cells of th ...
is a disease that involves oxidative damage, and GSH metabolism is dysfunctional in diabetic patients, GSTs may represent a potential target for diabetic drug treatment. In addition,
insulin
Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (''INS)'' gene. It is the main Anabolism, anabolic hormone of the body. It regulates the metabol ...
administration is known to result in increased GST gene expression through the
PI3K/AKT/mTOR pathway
The PI3K/AKT/mTOR pathway is an intracellular signaling pathway important in regulating the cell cycle. Therefore, it is directly related to cellular quiescence, proliferation, cancer, and longevity. PI3K activation phosphorylates and activates ...
and reduced intracellular oxidative stress, while
glucagon
Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It raises the concentration of glucose and fatty acids in the bloodstream and is considered to be the main catabolic hormone of the body. It is also used as a Glucagon (medic ...
decreases such gene expression.
Omega-class GST (GSTO) genes, in particular, are associated with neurological diseases such as
Alzheimer's
Alzheimer's disease (AD) is a neurodegenerative disease and the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As the disease advances, symptoms can include problems wit ...
,
Parkinson's
Parkinson's disease (PD), or simply Parkinson's, is a neurodegenerative disease primarily of the central nervous system, affecting both motor and non-motor systems. Symptoms typically develop gradually and non-motor issues become more prevalen ...
, and
amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) or—in the United States—Lou Gehrig's disease (LGD), is a rare, Terminal illness, terminal neurodegenerative disease, neurodegenerative disorder that results i ...
; again, oxidative stress is believed to be the culprit, with decreased GSTO gene expression resulting in a lowered age of onset for the diseases.
Release of GSTs as an indication of organ damage
The high intracellular concentrations of GSTs coupled with their cell-specific cellular distribution allows them to function as biomarkers for localising and monitoring injury to defined cell types. For example, hepatocytes contain high levels of alpha GST and serum alpha GST has been found to be an indicator of hepatocyte injury in transplantation, toxicity and viral infections.
Similarly, in humans, renal proximal tubular cells contain high concentrations of alpha GST, while distal tubular cells contain pi GST. This specific distribution enables the measurement of urinary GSTs to be used to quantify and localise renal tubular injury in transplantation, nephrotoxicity and ischaemic injury.
In rodent pre-clinical studies, urinary and serum alpha GST have been shown to be sensitive and specific indicators of renal proximal tubular and hepatocyte necrosis respectively.
GST-tags and the GST pull-down assay
GST can be added to a protein of interest to purify it from solution in a process known as a
pull-down assay
Immunoprecipitation (IP) is the technique of precipitating a protein antigen out of solution using an antibody that specifically binds to that particular protein. This process can be used to isolate and concentrate a particular protein from a sam ...
. This is accomplished by inserting the GST DNA coding sequence next to that which codes for the protein of interest. Thus, after transcription and translation, the GST protein and the protein of interest will be expressed together as a
fusion protein
Fusion proteins or chimeric (kī-ˈmir-ik) proteins (literally, made of parts from different sources) are proteins created through the joining of two or more genes that originally coded for separate proteins. Translation of this '' fusion gene'' ...
. Because the GST protein has a strong binding affinity for GSH, beads coated with the compound can be added to the protein mixture; as a result, the protein of interest attached to the GST will stick to the beads, isolating the protein from the rest of those in solution. The beads are recovered and washed with free GSH to detach the protein of interest from the beads, resulting in a purified protein. This technique can be used to elucidate direct protein–protein interactions. A drawback of this assay is that the protein of interest is attached to GST, altering its native state.
A GST-tag is often used to separate and purify proteins that contain the GST-fusion protein. The tag is 220
amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s (roughly 26 kDa) in size, which, compared to tags such as the
Myc-tag A myc tag is a polypeptide protein tag derived from the c-myc gene product that can be added to a protein using recombinant DNA technology. It can be used for affinity chromatography, then used to separate recombinant, overexpressed protein from wi ...
or the
FLAG-tag
FLAG-tag, or FLAG octapeptide, or FLAG epitope, is a peptide protein tag that can be added to a protein using recombinant DNA technology, having the sequence DYKDDDDK (where D=aspartic acid, Y=tyrosine, and K=lysine). It is one of the most specifi ...
, is quite large. It can be fused to either the ''N''-terminus or ''C''-terminus of a protein. In addition to functioning as a purification tag, GST acts as a chaperone for the attached protein, promoting its correct folding, as well as preventing it from becoming aggregated in inclusion bodies when expressed in bacteria. The GST tag can easily be removed following purification by addition of a protease if a suitable protease-cleavage site has been inserted between the GST-tag and the protein of interest (which is usually included in many commercially available sources of GST-tagged plasmids).
See also
*
Affinity chromatography
Affinity chromatography is a method of separating a biomolecule from a mixture, based on a highly specific macromolecular binding interaction between the biomolecule and another substance. The specific type of binding interaction depends on the ...
Maltose-binding protein
Maltose-binding protein (MBP) is a part of the maltose/maltodextrin system of ''Escherichia coli'', which is responsible for the uptake and efficient catabolism of maltodextrins. It is a complex regulatory and transport system involving many prote ...
*
Protein tag
Protein tags are peptide sequences genetically grafted onto a recombinant protein. Tags are attached to proteins for various purposes. They can be added to either end of the target protein, so they are either C-terminus or N-terminus specific or a ...