Giant Impact Hypothesis
   HOME

TheInfoList



OR:

The giant-impact hypothesis, sometimes called the Theia Impact, is an astrogeology
hypothesis A hypothesis (: hypotheses) is a proposed explanation for a phenomenon. A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess o ...
for the formation of the
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
first proposed in 1946 by Canadian geologist Reginald Daly. The hypothesis suggests that the Early Earth collided with a
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
-sized
protoplanet A protoplanet is a large planetary embryo that originated within a protoplanetary disk and has undergone internal melting to produce a differentiated interior. Protoplanets are thought to form out of kilometer-sized planetesimals that gravitatio ...
of the same orbit approximately 4.5 billion years ago in the early
Hadean eon The Hadean ( ) is the first and oldest of the four geologic eons of Earth's history, starting with the planet's formation about 4.6 billion years ago (estimated 4567.30 ± 0.16 million years ago set by the age of the oldest solid material ...
(about 20 to 100 million years after the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
coalesced), and the
ejecta Ejecta (; ) are particles ejected from an area. In volcanology, in particular, the term refers to particles including pyroclastic rock, pyroclastic materials (tephra) that came out of a explosive eruption, volcanic explosion and magma eruption v ...
of the
impact event An impact event is a collision between astronomical objects causing measurable effects. Impact events have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or meteoroids and have minimal effe ...
later accreted to form the Moon. The impactor planet is sometimes called
Theia Theia (; , also rendered Thea or Thia), also called Euryphaessa (, "wide-shining"), is one of the twelve Titans, the children of the earth goddess Gaia and the sky god Uranus in Greek mythology. She is the Greek goddess of sight and vision, an ...
, named after the mythical Greek Titan who was the mother of
Selene In ancient Greek mythology and Ancient Greek religion, religion, Selene (; , meaning "Moon")''A Greek–English Lexicon's.v. σελήνη is the goddess and personification of the Moon. Also known as Mene (), she is traditionally the daughter ...
, the goddess of the Moon. Analysis of lunar rocks published in a 2016 report suggests that the impact might have been a direct hit, causing a fragmentation and thorough mixing of both parent bodies. The giant-impact hypothesis is currently the favored hypothesis for lunar formation among
astronomers An astronomer is a scientist in the field of astronomy who focuses on a specific question or field outside the scope of Earth. Astronomers observe astronomical objects, such as stars, planets, moons, comets and galaxies – in either observ ...
. Evidence that supports this hypothesis includes: * The Moon's orbit has a similar orientation to
Earth's rotation Earth's rotation or Earth's spin is the rotation of planet Earth around its own Rotation around a fixed axis, axis, as well as changes in the orientation (geometry), orientation of the rotation axis in space. Earth rotates eastward, in progra ...
, both of which are at a similar angle to the ecliptic plane of the Solar System. * The
stable isotope Stable nuclides are Isotope, isotopes of a chemical element whose Nucleon, nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The Atomic nucleus, nuclei of such isotopes are no ...
ratios of lunar and terrestrial rock are identical, implying a common origin. * The Earth–Moon system contains an anomalously high
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
, meaning the momentum contained in Earth's rotation, the Moon's rotation and the Moon revolving around Earth is significantly higher than the other
terrestrial planet A terrestrial planet, tellurian planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate, rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to ...
s. A giant impact might have supplied this excess momentum. * Moon samples indicate that the Moon was once molten to a substantial, but unknown, depth. This might have required much more
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
than predicted to be available from the accretion of a
celestial body An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
of the Moon's size and
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
. An extremely energetic process, such as a giant impact, could provide this energy. * The Moon has a relatively small
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
core, which gives it a much lower
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
than Earth. Computer models of a giant impact of a Mars-sized body with Earth indicate the impactor's core would likely penetrate deep into Earth and fuse with its own core. This would leave the Moon, which was formed from the ejecta of lighter crust and mantle fragments that went beyond the
Roche limit In celestial mechanics, the Roche limit, also called Roche radius, is the distance from a celestial body within which a second celestial body, held together only by its own force of gravity, will disintegrate because the first body's tidal force ...
and were not pulled back by
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
to re-fuse with Earth, with less remaining metallic iron than other planetary bodies. * The Moon is depleted in volatile elements compared to Earth. Vaporizing at comparably lower temperatures, they could be lost in a high-energy event, with the Moon's smaller
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
unable to recapture them while Earth did. * There is evidence in other
star system A star system or stellar system is a small number of stars that orbit each other, bound by gravity, gravitational attraction. It may sometimes be used to refer to a single star. A large group of stars bound by gravitation is generally calle ...
s of similar collisions, resulting in debris discs. * Giant collisions are consistent with the leading theory of the formation of the Solar System. However, several questions remain concerning the best current models of the giant-impact hypothesis. The energy of such a giant impact is predicted to have heated Earth to produce a global magma ocean, and evidence of the resultant planetary differentiation of the heavier material sinking into Earth's mantle has been documented. However, there is no self-consistent model that starts with the giant-impact event and follows the evolution of the debris into a single moon.


History

In 1898, George Darwin made the suggestion that Earth and the Moon were once a single body. Darwin's hypothesis was that a molten Moon had been spun from Earth because of
centrifugal force Centrifugal force is a fictitious force in Newtonian mechanics (also called an "inertial" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed radially away from the axi ...
s, and this became the dominant academic explanation. Using
Newtonian mechanics Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: # A body r ...
, he calculated that the Moon had orbited much more closely in the past and was drifting away from Earth. This drifting was later confirmed by American and
Soviet The Union of Soviet Socialist Republics. (USSR), commonly known as the Soviet Union, was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 until Dissolution of the Soviet ...
experiments, using laser ranging targets placed on the Moon. Nonetheless, Darwin's calculations could not resolve the mechanics required to trace the Moon back to the surface of Earth. In 1946,
Reginald Aldworth Daly Reginald Aldworth Daly (May 19, 1871 – September 19, 1957) was a Canadian geologist. He is best known for being one of the first proponents of the giant-impact hypothesis of the formation of the Moon. Biography Reginald Daly was educated at th ...
of
Harvard University Harvard University is a Private university, private Ivy League research university in Cambridge, Massachusetts, United States. Founded in 1636 and named for its first benefactor, the History of the Puritans in North America, Puritan clergyma ...
challenged Darwin's explanation, adjusting it to postulate that the creation of the Moon was caused by an impact rather than centrifugal forces. Little attention was paid to Professor Daly's challenge until a conference on satellites in 1974, during which the idea was reintroduced and later published and discussed in ''
Icarus In Greek mythology, Icarus (; , ) was the son of the master craftsman Daedalus, the architect of the labyrinth of Crete. After Theseus, king of Athens and enemy of King Minos, escaped from the labyrinth, Minos suspected that Icarus and Daedalu ...
'' in 1975 by William K. Hartmann and Donald R. Davis. Their models suggested that, at the end of the planet formation period, several satellite-sized bodies had formed that could collide with the planets or be captured. They proposed that one of these objects might have collided with Earth, ejecting refractory, volatile-poor dust that could coalesce to form the Moon. This collision could potentially explain the unique geological and geochemical properties of the Moon. A similar approach was taken by Canadian astronomer Alastair G. W. Cameron and American astronomer William R. Ward, who suggested that the Moon was formed by the
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points o ...
ial impact upon Earth of a body the size of Mars. It is hypothesized that most of the outer silicates of the colliding body would be vaporized, whereas a metallic core would not. Hence, most of the collisional material sent into orbit would consist of silicates, leaving the coalescing Moon deficient in iron. The more volatile materials that were emitted during the collision probably would escape the Solar System, whereas
silicate A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is also used ...
s would tend to coalesce. Eighteen months prior to an October 1984 conference on lunar origins, Bill Hartmann, Roger Phillips, and Jeff Taylor challenged fellow lunar scientists: "You have eighteen months. Go back to your Apollo data, go back to your computer, and do whatever you have to, but make up your mind. Don't come to our conference unless you have something to say about the Moon's birth." At the 1984 conference at Kona, Hawaii, the giant-impact hypothesis emerged as the most favored hypothesis.


Theia

The name of the hypothesised
protoplanet A protoplanet is a large planetary embryo that originated within a protoplanetary disk and has undergone internal melting to produce a differentiated interior. Protoplanets are thought to form out of kilometer-sized planetesimals that gravitatio ...
is derived from the mythical
Greek Greek may refer to: Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group *Greek language, a branch of the Indo-European language family **Proto-Greek language, the assumed last common ancestor of all kno ...
titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
Theia Theia (; , also rendered Thea or Thia), also called Euryphaessa (, "wide-shining"), is one of the twelve Titans, the children of the earth goddess Gaia and the sky god Uranus in Greek mythology. She is the Greek goddess of sight and vision, an ...
, who gave birth to the Moon goddess
Selene In ancient Greek mythology and Ancient Greek religion, religion, Selene (; , meaning "Moon")''A Greek–English Lexicon's.v. σελήνη is the goddess and personification of the Moon. Also known as Mene (), she is traditionally the daughter ...
. This designation was proposed initially by the English geochemist Alex N. Halliday in 2000 and has become accepted in the scientific community. According to modern theories of planet formation, Theia was part of a population of Mars-sized bodies that existed in the Solar System 4.5 billion years ago. One of the attractive features of the giant-impact hypothesis is that the formation of the Moon and Earth align; during the course of its formation, Earth is thought to have experienced dozens of collisions with planet-sized bodies. The Moon-forming collision would have been only one such "giant impact" but certainly the last significant impactor event. The Late Heavy Bombardment by much smaller asteroids may have occurred laterapproximately 3.9 billion years ago.


Basic model

Astronomers think the collision between Earth and Theia happened at about 4.4 to 4.45 billion years ago ( bya); about 0.1 billion years after the Solar System began to form. In astronomical terms, the impact would have been of moderate velocity. Theia is thought to have struck Earth at an
oblique angle In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight lines at a point. Formally, an angle is a figure lying in a plane formed by two rays, called the '' sides'' of the angle, sharing ...
when Earth was nearly fully formed. Computer simulations of this "late-impact" scenario suggest an initial impactor velocity below at "infinity" (far enough that gravitational attraction is not a factor), increasing as it approached to over at impact, and an impact angle of about 45°. However,
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
abundance in lunar rock suggests "vigorous mixing" of Theia and Earth, indicating a steep impact angle. Theia's iron core would have sunk into the young Earth's core, and most of Theia's mantle accreted onto Earth's mantle. However, a significant portion of the mantle material from both Theia and Earth would have been ejected into orbit around Earth (if ejected with velocities between orbital velocity and
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming: * Ballistic trajectory – no other forces are acting on the object, such as ...
) or into individual orbits around the Sun (if ejected at higher velocities). Modelling has hypothesised that material in orbit around Earth may have accreted to form the Moon in three consecutive phases, accreting first from the bodies initially present outside Earth's
Roche limit In celestial mechanics, the Roche limit, also called Roche radius, is the distance from a celestial body within which a second celestial body, held together only by its own force of gravity, will disintegrate because the first body's tidal force ...
, which acted to confine the inner disk material within the Roche limit. The inner disk slowly and viscously spread back out to Earth's Roche limit, pushing along outer bodies via resonant interactions. After several tens of years, the disk spread beyond the Roche limit, and started producing new objects that continued the growth of the Moon, until the inner disk was depleted in mass after several hundreds of years. Material in stable Kepler orbits was thus likely to hit the Earth–Moon system sometime later (because the Earth–Moon system's Kepler orbit around the Sun also remains stable). Estimates based on
computer simulation Computer simulation is the running of a mathematical model on a computer, the model being designed to represent the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determin ...
s of such an event suggest that some twenty percent of the original mass of Theia would have ended up as an orbiting ring of debris around Earth, and about half of this matter coalesced into the Moon. Earth would have gained significant amounts of
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
and
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
from such a collision. Regardless of the speed and tilt of Earth's rotation before the impact, it would have experienced a day some five hours long after the impact, and Earth's equator and the Moon's orbit would have become
coplanar In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. How ...
. Not all of the ring material need have been swept up right away: the thickened crust of the Moon's far side suggests the possibility that a second moon about in diameter formed in a
Lagrange point In celestial mechanics, the Lagrange points (; also Lagrangian points or libration points) are points of equilibrium for small-mass objects under the gravitational influence of two massive orbiting bodies. Mathematically, this involves t ...
of the Moon. The smaller moon may have remained in orbit for tens of millions of years. As the two moons migrated outward from Earth, solar tidal effects would have made the Lagrange orbit unstable, resulting in a slow-velocity collision that "pancaked" the smaller moon onto what is now the far side of the Moon, adding material to its crust. Lunar magma cannot pierce through the thick crust of the far side, causing fewer lunar maria, while the near side has a thin crust displaying the large maria visible from Earth. Above a high resolution threshold for simulations, a study published in 2022 finds that giant impacts can immediately place a satellite with similar mass and iron content to the Moon into orbit far outside Earth's Roche limit. Even satellites that initially pass within the Roche limit can reliably and predictably survive, by being partially stripped and then torqued onto wider, stable orbits. Furthermore, the outer layers of these directly formed satellites are molten over cooler interiors and are composed of around 60% proto-Earth material. This could alleviate the tension between the Moon's Earth-like isotopic composition and the different signature expected for the impactor. Immediate formation opens up new options for the Moon's early orbit and evolution, including the possibility of a highly tilted orbit to explain the lunar inclination, and offers a simpler, single-stage scenario for the origin of the Moon.


Composition

In 2001, a team at the
Carnegie Institution of Washington The Carnegie Institution for Science, also known as Carnegie Science and the Carnegie Institution of Washington, is an organization established to fund and perform scientific research in the United States. This institution is headquartered in W ...
reported that the rocks from the
Apollo program The Apollo program, also known as Project Apollo, was the United States human spaceflight program led by NASA, which Moon landing, landed the first humans on the Moon in 1969. Apollo followed Project Mercury that put the first Americans in sp ...
carried an
isotopic signature An isotopic signature (also isotopic fingerprint) is a ratio of non-radiogenic ' stable isotopes', stable radiogenic isotopes, or unstable radioactive isotopes of particular elements in an investigated material. The ratios of isotopes in a sample ...
that was identical with rocks from Earth, and were different from almost all other bodies in the Solar System. In 2014, a team in Germany reported that the Apollo samples had a slightly different isotopic signature from Earth rocks. The difference was slight, but statistically significant. One possible explanation is that Theia formed near Earth. This empirical data showing close similarity of composition can be explained only by the standard giant-impact hypothesis, as it is extremely unlikely that two bodies prior to collision had such similar composition.


Equilibration hypothesis

In 2007, researchers from the California Institute of Technology showed that the likelihood of Theia having an identical isotopic signature as Earth was very small (less than 1 percent). They proposed that in the aftermath of the giant impact, while Earth and the proto-lunar disc were molten and vaporised, the two reservoirs were connected by a common silicate vapor atmosphere and that the Earth–Moon system became homogenised by convective stirring while the system existed in the form of a continuous fluid. Such an "equilibration" between the post-impact Earth and the proto-lunar disc is the only proposed scenario that explains the isotopic similarities of the Apollo rocks with rocks from Earth's interior. For this scenario to be viable, however, the proto-lunar disc would have to endure for about 100 years. Work is ongoing to determine whether or not this is possible.


Direct collision hypothesis

According to research (2012) to explain similar compositions of the Earth and the Moon based on simulations at the
University of Bern The University of Bern (, , ) is a public university, public research university in the Switzerland, Swiss capital of Bern. It was founded in 1834. It is regulated and financed by the canton of Bern. It is a comprehensive university offering a br ...
by physicist Andreas Reufer and his colleagues, Theia collided directly with Earth instead of barely swiping it. The collision speed may have been higher than originally assumed, and this higher velocity may have totally destroyed Theia. According to this modification, the composition of Theia is not so restricted, making a composition of up to 50% water ice possible.


Synestia hypothesis

One effort, in 2018, to homogenise the products of the collision was to energise the primary body by way of a greater pre-collision rotational speed. This way, more material from the primary body would be spun off to form the Moon. Further computer modelling determined that the observed result could be obtained by having the pre-Earth body spinning very rapidly, so much so that it formed a new celestial object which was given the name ' synestia'. This is an unstable state that could have been generated by yet another collision to get the rotation spinning fast enough. Further modelling of this transient structure has shown that the primary body spinning as a doughnut-shaped object (the synestia) existed for about a century (a very short time) before it cooled down and gave birth to Earth and the Moon.


Terrestrial magma ocean hypothesis

Another model, in 2019, to explain the similarity of Earth and the Moon's compositions posits that shortly after Earth formed, it was covered by a sea of hot magma, while the impacting object was likely made of solid material. Modelling suggests that this would lead to the impact heating the magma much more than solids from the impacting object, leading to more material being ejected from the proto-Earth, so that about 80% of the Moon-forming debris originated from the proto-Earth. Many prior models had suggested 80% of the Moon coming from the impactor.


Evidence

Indirect evidence for the giant impact scenario comes from rocks collected during the Apollo Moon landings, which show
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
ratios nearly identical to those of Earth. The highly anorthositic composition of the lunar crust, as well as the existence of KREEP-rich samples, suggest that a large portion of the Moon once was molten; and a giant impact scenario could easily have supplied the energy needed to form such a magma ocean. Several lines of evidence show that if the Moon has an
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
-rich core, it must be a small one. In particular, the mean density, moment of inertia, rotational signature, and magnetic induction response of the Moon all suggest that the radius of its core is less than about 25% the radius of the Moon, in contrast to about 50% for most of the other terrestrial bodies. Appropriate impact conditions satisfying the angular momentum constraints of the Earth–Moon system yield a Moon formed mostly from the mantles of Earth and the impactor, while the core of the impactor accretes to Earth. Earth has the highest density of all the planets in the Solar System; the absorption of the core of the impactor body explains this observation, given the proposed properties of the early Earth and Theia. Comparison of the
zinc Zinc is a chemical element; it has symbol Zn and atomic number 30. It is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodic tabl ...
isotopic composition of lunar samples with that of Earth and
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
rocks provides further evidence for the impact hypothesis.
Zinc Zinc is a chemical element; it has symbol Zn and atomic number 30. It is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodic tabl ...
is strongly fractionated when volatilised in planetary rocks, but not during normal
igneous Igneous rock ( ), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava. The magma can be derived from partial ...
processes, so zinc abundance and isotopic composition can distinguish the two geological processes. Moon rocks contain more heavy isotopes of zinc, and overall less zinc, than corresponding igneous Earth or Mars rocks, which is consistent with zinc being depleted from the Moon through evaporation, as expected for the giant impact origin. Collisions between ejecta escaping Earth's gravity and asteroids would have left impact heating signatures in stony meteorites; analysis based on assuming the existence of this effect has been used to date the impact event to 4.47 billion years ago, in agreement with the date obtained by other means. Warm silica-rich dust and abundant SiO gas, products of high velocity impactsover between rocky bodies, have been detected by the Spitzer Space Telescope around the nearby (29 pc distant) young (~12 My old) star HD 172555 in the Beta Pictoris moving group. A belt of warm dust in a zone between 0.25AU and 2AU from the young star HD 23514 in the
Pleiades The Pleiades (), also known as Seven Sisters and Messier 45 (M45), is an Asterism (astronomy), asterism of an open cluster, open star cluster containing young Stellar classification#Class B, B-type stars in the northwest of the constellation Tau ...
cluster appears similar to the predicted results of Theia's collision with the embryonic Earth, and has been interpreted as the result of planet-sized objects colliding with each other. A similar belt of warm dust was detected around the star BD+20°307 (HIP 8920, SAO 75016). On 1 November 2023, scientists reported that, according to computer simulations, remnants of Theia could be still visible inside the Earth as two giant anomalies of the
Earth's mantle Earth's mantle is a layer of silicate mineral, silicate rock between the Earth's crust, crust and the Earth's outer core, outer core. It has a mass of and makes up 67% of the mass of Earth. It has a thickness of making up about 46% of Earth's ...
.


Difficulties

This lunar origin hypothesis has some difficulties that have yet to be resolved. For example, the giant-impact hypothesis implies that a surface magma ocean would have formed following the impact. Yet there is no evidence that Earth ever had such a magma ocean and it is likely there exists material that has never been processed in a magma ocean.


Composition

A number of compositional inconsistencies need to be addressed. * The ratios of the Moon's volatile elements are not explained by the giant-impact hypothesis. If the giant-impact hypothesis is correct, these ratios must be due to some other cause. * The presence of volatiles such as water trapped in lunar
basalt Basalt (; ) is an aphanite, aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the planetary surface, surface of a terrestrial ...
s and carbon emissions from the lunar surface is more difficult to explain if the Moon was caused by a high-temperature impact. * The iron oxide (FeO) content (13%) of the Moon, intermediate between that of Mars (18%) and the terrestrial mantle (8%), rules out most of the source of the proto-lunar material from Earth's mantle. * If the bulk of the proto-lunar material had come from an impactor, the Moon should be enriched in siderophilic elements, when, in fact, it is deficient in them. * The Moon's oxygen isotopic ratios are essentially identical to those of Earth. Oxygen isotopic ratios, which may be measured very precisely, yield a unique and distinct signature for each Solar System body. If a separate proto-planet
Theia Theia (; , also rendered Thea or Thia), also called Euryphaessa (, "wide-shining"), is one of the twelve Titans, the children of the earth goddess Gaia and the sky god Uranus in Greek mythology. She is the Greek goddess of sight and vision, an ...
had existed, it probably would have had a different oxygen isotopic signature than Earth, as would the ejected mixed material. * The Moon's titanium isotope ratio (50Ti/47Ti) appears so close to Earth's (within 4 ppm), that little if any of the colliding body's mass could likely have been part of the Moon.


Lack of a Venusian moon

If the Moon was formed by such an impact, it is possible that other inner planets also may have been subjected to comparable impacts. A moon that formed around
Venus Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" planet for having almost the same size and mass, and the closest orbit to Earth's. While both are rocky planets, Venus has an atmosphere much thicker ...
by this process would have been unlikely to escape. If such a moon-forming event had occurred there, a possible explanation of why the planet does not have such a moon might be that a second collision occurred that countered the
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
from the first impact. Another possibility is that the strong tidal forces from the Sun would tend to destabilise the orbits of moons around close-in planets. For this reason, if Venus's slow rotation rate began early in its history, any satellites larger than a few kilometers in diameter would likely have spiraled inwards and collided with Venus. Simulations of the chaotic period of terrestrial planet formation suggest that impacts like those hypothesised to have formed the Moon were common. For typical terrestrial planets with a mass of 0.5 to 1 Earth masses, such an impact typically results in a single moon containing 4% of the host planet's mass. The inclination of the resulting moon's orbit is random, but this tilt affects the subsequent dynamic evolution of the system. For example, some orbits may cause the moon to spiral back into the planet. Likewise, the proximity of the planet to the star will also affect the orbital evolution. The net effect is that it is more likely for impact-generated moons to survive when they orbit more distant terrestrial planets and are aligned with the planetary orbit.


Possible origin of Theia

In 2004,
Princeton University Princeton University is a private university, private Ivy League research university in Princeton, New Jersey, United States. Founded in 1746 in Elizabeth, New Jersey, Elizabeth as the College of New Jersey, Princeton is the List of Colonial ...
mathematician Edward Belbruno and astrophysicist J. Richard Gott III proposed that Theia coalesced at the or
Lagrangian point In celestial mechanics, the Lagrange points (; also Lagrangian points or libration points) are points of equilibrium (mechanics), equilibrium for small-mass objects under the gravity, gravitational influence of two massive orbit, orbiting b ...
relative to Earth (in about the same orbit and about 60° ahead or behind), similar to a
trojan asteroid In astronomy, a trojan is a small celestial body (mostly asteroids) that shares the orbit of a larger body, remaining in a stable orbit approximately 60° ahead of or behind the main body near one of its Lagrangian points and . Trojans can shar ...
. Two-dimensional computer models suggest that the stability of Theia's proposed trojan orbit would have been affected when its growing mass exceeded a threshold of approximately 10% of Earth's mass (the mass of Mars). In this scenario, gravitational perturbations by
planetesimal Planetesimals () are solid objects thought to exist in protoplanetary disks and debris disks. Believed to have formed in the Solar System about 4.6 billion years ago, they aid study of its formation. Formation A widely accepted theory of pla ...
s caused Theia to depart from its stable Lagrangian location, and subsequent interactions with proto-Earth led to a collision between the two bodies. In 2008, evidence was presented that suggests that the collision might have occurred later than the accepted value of 4.53  Gya, at approximately 4.48 Gya. A 2014 comparison of computer simulations with elemental abundance measurements in Earth's mantle indicated that the collision occurred approximately 95 My after the formation of the Solar System. It has been suggested that other significant objects might have been created by the impact, which could have remained in orbit between Earth and the Moon, stuck in Lagrangian points. Such objects might have stayed within the Earth–Moon system for as long as 100 million years, until the gravitational tugs of other planets destabilised the system enough to free the objects. A study published in 2011 suggested that a subsequent collision between the Moon and one of these smaller bodies caused the notable differences in physical characteristics between the two hemispheres of the Moon. This collision, simulations have supported, would have been at a low enough velocity so as not to form a crater; instead, the material from the smaller body would have spread out across the Moon (in what would become its far side), adding a thick layer of highlands crust. The resulting mass irregularities would subsequently produce a gravity gradient that resulted in
tidal locking Tidal locking between a pair of co-orbiting astronomical body, astronomical bodies occurs when one of the objects reaches a state where there is no longer any net change in its rotation rate over the course of a complete orbit. In the case where ...
of the Moon so that today, only the near side remains visible from Earth. However, mapping by the GRAIL mission has ruled out this scenario. In 2019, a team at the
University of Münster The University of Münster (, until 2023 , WWU) is a public research university located in the city of Münster, North Rhine-Westphalia in Germany. With more than 43,000 students and over 120 fields of study in 15 departments, it is Germany's ...
reported that the
molybdenum Molybdenum is a chemical element; it has Symbol (chemistry), symbol Mo (from Neo-Latin ''molybdaenum'') and atomic number 42. The name derived from Ancient Greek ', meaning lead, since its ores were confused with lead ores. Molybdenum minerals hav ...
isotopic composition in Earth's primitive mantle originates from the outer Solar System, hinting at the source of water on Earth. One possible explanation is that Theia originated in the outer Solar System.


Alternative hypotheses

Other mechanisms that have been suggested at various times for the Moon's origin are that the Moon was spun off from Earth's molten surface by
centrifugal force Centrifugal force is a fictitious force in Newtonian mechanics (also called an "inertial" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed radially away from the axi ...
; that it was formed elsewhere and was subsequently captured by Earth's gravitational field; or that Earth and the Moon formed at the same time and place from the same
accretion disk An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and ...
. None of these hypotheses can account for the high
angular momentum Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
of the Earth–Moon system. Another hypothesis attributes the formation of the Moon to the impact of a large asteroid with Earth much later than previously thought, creating the satellite primarily from debris from Earth. In this hypothesis, the formation of the Moon occurs 60–140 million years after the formation of the Solar System (as compared to hypothesized Theia impact at 4.527 ± 0.010 billion years). The asteroid impact in this scenario would have created a magma ocean on Earth and the proto-Moon with both bodies sharing a common plasma metal vapor atmosphere. The shared metal vapor bridge would have allowed material from Earth and the proto-Moon to exchange and equilibrate into a more common composition. Yet another hypothesis proposes that the Moon and Earth formed together, not from the collision of once-distant bodies. This model, published in 2012 by Robin M. Canup, suggests that the Moon and Earth formed from a massive collision of two planetary bodies, each larger than Mars, which then re-collided to form what is now called Earth. After the re-collision, Earth was surrounded by a disk of material which accreted to form the Moon.


See also


References


Notes


Further reading

Academic articles * * * * * * Non-academic books * * *


External links


Planetary Science Institute: Giant Impact Hypothesis


by Prof. AGW Cameron

* ttp://www.swri.org/press/impact.htm SwRI giant impact hypothesis simulation(.wmv and .mov)
Origin of the Moon – computer model of accretion


– Including articles about the giant impact hypothesis
Planet Smash-Up Sends Vaporized Rock, Hot Lava Flying
(2009-08-10 JPL News)
How common are Earth–Moon planetary systems?
: 23 May 2011
The Surprising State of the Earth after the Moon-Forming Giant Impact
– Sarah Stewart (SETI Talks), Jan 28, 2015 {{Portal bar, Astronomy, Stars, Spaceflight, Outer space, Solar System Lunar science Hypothetical impact events Earth sciences Solar System dynamic theories