HOME

TheInfoList



OR:

In mathematics, a generating set Γ of a module ''M'' over a ring ''R'' is a
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
of ''M'' such that the smallest
submodule In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the ...
of ''M'' containing Γ is ''M'' itself (the smallest submodule containing a subset is the
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, thei ...
of all submodules containing the set). The set Γ is then said to generate ''M''. For example, the ring ''R'' is generated by the identity element 1 as a left ''R''-module over itself. If there is a
finite Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb Traditionally, a finite verb (from la, fīnītus, past partici ...
generating set, then a module is said to be finitely generated. This applies to
ideals Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considered ...
, which are the submodules of the ring itself. In particular, a
principal ideal In mathematics, specifically ring theory, a principal ideal is an ideal I in a ring R that is generated by a single element a of R through multiplication by every element of R. The term also has another, similar meaning in order theory, where ...
is an ideal that has a generating set consisting of a single element. Explicitly, if Γ is a generating set of a module ''M'', then every element of ''M'' is a (finite) ''R''-linear combination of some elements of Γ; i.e., for each ''x'' in ''M'', there are ''r''1, ..., ''r''''m'' in ''R'' and ''g''1, ..., ''g''''m'' in Γ such that : x = r_1 g_1 + \cdots + r_m g_m. Put in another way, there is a
surjection In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of ...
: \bigoplus_ R \to M, \, r_g \mapsto r_g g, where we wrote ''r''''g'' for an element in the ''g''-th component of the direct sum. (Coincidentally, since a generating set always exists, e.g. ''M'' itself, this shows that a module is a
quotient In arithmetic, a quotient (from lat, quotiens 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a ...
of a
free module In mathematics, a free module is a module that has a basis – that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a fie ...
, a useful fact.) A generating set of a module is said to be minimal if no
proper subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
of the set generates the module. If ''R'' is a field, then a minimal generating set is the same thing as a basis. Unless the module is finitely generated, there may exist no minimal generating set. The
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
of a minimal generating set need not be an invariant of the module; Z is generated as a principal ideal by 1, but it is also generated by, say, a minimal generating set . What ''is'' uniquely determined by a module is the
infimum In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest ...
of the numbers of the generators of the module. Let ''R'' be a
local ring In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic ...
with
maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals ...
''m'' and
residue field In mathematics, the residue field is a basic construction in commutative algebra. If ''R'' is a commutative ring and ''m'' is a maximal ideal, then the residue field is the quotient ring ''k'' = ''R''/''m'', which is a field. Frequently, ''R'' is ...
''k'' and ''M'' finitely generated module. Then
Nakayama's lemma In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring (typically a commutative ring) a ...
says that ''M'' has a minimal generating set whose cardinality is \dim_k M / mM = \dim_k M \otimes_R k. If ''M'' is flat, then this minimal generating set is
linearly independent In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts ...
(so ''M'' is free). See also: Minimal resolution. A more refined information is obtained if one considers the relations between the generators; see Free presentation of a module.


See also

* Countably generated module *
Flat module In algebra, a flat module over a ring ''R'' is an ''R''- module ''M'' such that taking the tensor product over ''R'' with ''M'' preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact s ...
* Invariant basis number


References

*Dummit, David; Foote, Richard. ''Abstract Algebra''. Abstract algebra {{algebra-stub