A genealogical DNA test is a
DNA-based test used in
genetic genealogy
Genetic genealogy is the use of genealogical DNA tests, i.e., DNA profiling and DNA testing, in combination with traditional genealogical methods, to infer genetic relationships between individuals. This application of genetics came to be used ...
that looks at specific locations of a person's
genome in order to find or verify ancestral
genealogical relationships, or (with lower reliability) to estimate the
ethnic mixture of an individual. Since different testing companies use different ethnic reference groups and different matching algorithms, ethnicity estimates for an individual vary between tests, sometimes dramatically.
Three principal types of genealogical DNA tests are available, with each looking at a different part of the genome and being useful for different types of genealogical research:
autosomal (atDNA),
mitochondrial
A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is use ...
(mtDNA), and
Y-DNA.
Autosomal tests may result in a large number of DNA matches to both males and females who have also tested with the same company. Each match will typically show an estimated degree of relatedness, i.e., a close family match, 1st-2nd cousins, 3rd-4th cousins, etc. The furthest degree of relationship is usually the "6th-cousin or further" level. However, due to the random nature of which, and how much, DNA is inherited by each tested person from their common ancestors, precise relationship conclusions can only be made for close relations. Traditional
genealogical research, and the sharing of family trees, is typically required for interpretation of the results. Autosomal tests are also used in estimating ethnic mix.
MtDNA and Y-DNA tests are much more objective. However, they give considerably fewer DNA matches, if any (depending on the company doing the testing), since they are limited to relationships along a strict
female line and a strict
male line respectively. MtDNA and Y-DNA tests are utilized to identify
archeological culture
An archaeological culture is a recurring assemblage of types of artifacts, buildings and monuments from a specific period and region that may constitute the material culture remains of a particular past human society. The connection between thes ...
s and migration paths of a person's ancestors along a strict mother's line or a strict father's line. Based on MtDNA and Y-DNA, a person's
haplogroup(s) can be identified. The mtDNA test can be taken by both males and females, because everyone inherits their mtDNA from their mother, as the mitochondrial DNA is located in the egg cell. However, a Y-DNA test can only be taken by a male, as only males have a Y-chromosome.
DNA testing for consumers
The first company to provide direct-to-consumer genealogical DNA tests was the now defunct
GeneTree. However, it did not offer multi-generational genealogy tests. In fall 2001, GeneTree sold its assets to Salt Lake City-based
Sorenson Molecular Genealogy Foundation (SMGF) which originated in 1999.
While in operation, SMGF provided free Y-chromosome and mitochondrial DNA tests to thousands.
Later, GeneTree returned to genetic testing for genealogy in conjunction with the Sorenson parent company and eventually was part of the assets acquired in the
Ancestry.com buyout of SMGF in 2012.
In 2000,
Family Tree DNA, founded by
Bennett Greenspan and Max Blankfeld, was the first company dedicated to direct-to-consumer testing for genealogy research. They initially offered eleven-marker Y-Chromosome STR tests and HVR1 mitochondrial DNA tests. They originally tested in partnership with the University of Arizona.
In 2007,
23andMe was the first company to offer a
saliva
Saliva (commonly referred to as spit) is an extracellular fluid produced and secreted by salivary glands in the mouth. In humans, saliva is around 99% water, plus electrolytes, mucus, white blood cells, epithelial cells (from which DNA can be ...
-based
direct-to-consumer genetic testing.
It was also the first to implement the use of autosomal DNA for ancestry testing, which other major companies (e.g., Ancestry, Family Tree DNA, and
MyHeritage
MyHeritage is an online genealogy platform with web, mobile, and software products and services, introduced by the Israeli company MyHeritage in 2003. Users of the platform can obtain their family trees, upload and browse through photos, and sear ...
) now use.
MyHeritage
MyHeritage is an online genealogy platform with web, mobile, and software products and services, introduced by the Israeli company MyHeritage in 2003. Users of the platform can obtain their family trees, upload and browse through photos, and sear ...
launched its genetic testing service in 2016, allowing users to use
cheek swab
A buccal swab, also known as buccal smear, is a way to collect DNA from the cells on the inside of a person's cheek. Buccal swabs are a relatively non-invasive way to collect DNA samples for testing. Buccal means ''cheek'' or ''mouth''. It is very ...
s to collect samples.
In 2019, new analysis tools were presented: autoclusters (grouping all matches visually into clusters) and family tree theories (suggesting conceivable relations between DNA matches by combining several Myheritage trees as well as the Geni global family tree).
Living DNA, founded in 2015, also provides a genetic testing service. Living DNA uses
SNP chips to provide reports on autosomal ancestry, Y, and mtDNA ancestry. Living DNA provides detailed reports on ancestry from the UK as well as detailed Y chromosome and mtDNA reports.
In 2019 it was estimated that large genealogical testing companies had about 26 million DNA profiles.
Many transferred their test result for free to multiple testing sites, and also to genealogical services such as
Geni.com
Geni is an American commercial genealogy and social networking website, founded in 2006, and owned by MyHeritage, an Israeli private company, since November 2012. As of 2021, MyHeritage has kept its genealogical website separate from Geni's we ...
and
GEDmatch. GEDmatch said in 2018 that about half of their one million profiles were from the USA.
The popular consciousness of DNA testing and of DNA generally is subject to a number of misconceptions involving the reliability of testing, the nature of the connections with one's ancestors, the connection between DNA and personal traits, etc.
Procedure
A genealogical DNA test is performed on a DNA sample obtained by cheek-scraping (also known as a
buccal swab
A buccal swab, also known as buccal smear, is a way to collect DNA from the cells on the inside of a person's cheek. Buccal swabs are a relatively non-invasive way to collect DNA samples for testing. Buccal means ''cheek'' or ''mouth''. It is very ...
), spit-cups,
mouthwash, or
chewing gum. Typically, the sample collection uses a home test kit supplied by a service provider such as
23andMe,
AncestryDNA
Ancestry.com LLC is an American genealogy company based in Lehi, Utah. The largest for-profit genealogy company in the world, it operates a network of genealogical, historical records, and related genetic genealogy websites.
In November 2018, ...
,
Family Tree DNA, or
MyHeritage
MyHeritage is an online genealogy platform with web, mobile, and software products and services, introduced by the Israeli company MyHeritage in 2003. Users of the platform can obtain their family trees, upload and browse through photos, and sear ...
. After following the kit instructions on how to collect the sample, it is returned to the supplier for analysis. The sample is then processed using a technology known as
DNA microarray
A DNA microarray (also commonly known as DNA chip or biochip) is a collection of microscopic DNA spots attached to a solid surface. Scientists use DNA microarrays to measure the expression levels of large numbers of genes simultaneously or to ...
to obtain the genetic information.
Types of tests
There are three major types of genealogical DNA tests:
Autosomal (which includes X-DNA), Y-DNA, and mtDNA.
*Autosomal DNA tests look at chromosome pairs 1–22 and the X part of the 23rd chromosome. The autosomes (chromosome pairs 1–22) are inherited from both parents and all recent ancestors. The X-chromosome follows a special inheritance pattern, because females (XX) inherit an X-chromosome from each of their parents, while males (XY) inherit an X-chromosome from their mother and a Y-chromosome from their father (XY). Ethnicity estimates are often included with this sort of testing.
*Y-DNA looks at the Y-chromosome, which is passed down from father to son. Thus, the Y-DNA test can only be taken by males to explore their direct paternal line.
*mtDNA looks at the mitochondria, which is passed down from mother to child. Thus, the mtDNA test can be taken by both males and females, and it explores one's direct maternal line.
Y-DNA and mtDNA cannot be used for ethnicity estimates, but can be used to find one's
haplogroup, which is unevenly distributed geographically.
Direct-to-consumer DNA test companies have often labeled haplogroups by continent or ethnicity (e.g., an "African haplogroup" or a "Viking haplogroup"), but these labels may be speculative or misleading.
Autosomal DNA (atDNA) testing
Testing
Autosomal DNA is contained in the 22 pairs of chromosomes not involved in determining a person's sex.
Autosomal DNA recombines in each generation, and new offspring receive one set of chromosomes from each parent. These are inherited exactly equally from both parents and roughly equally from grandparents to about 3x great-grandparents. Therefore, the number of markers (one of two or more known variants in the
genome at a particular location – known as
Single-nucleotide polymorphisms or SNPs) inherited from a specific ancestor decreases by about half with each successive generation; that is, an individual receives half of their markers from each parent, about a quarter of those markers from each grandparent; about an eighth of those markers from each great-grandparent, etc. Inheritance is more random and unequal from more distant ancestors. Generally, a genealogical DNA test might test about 700,000 SNPs (specific points in the genome).
Reporting process
The preparation of a report on the DNA in the sample proceeds in multiple stages:
*identification of the DNA base pair at specific SNP locations
*comparison with previously stored results
*interpretation of matches
=Base pair identification
=
All major service providers use equipment with chips supplied by
Illumina. The chip determines which SNP locations are tested. Different versions of the chip are used by different service providers. In addition, updated versions of the Illumina chip may test different sets of SNP locations. The list of SNP locations and base pairs at that location is usually available to the customer as "raw data". The raw data can be uploaded to some other genealogical service providers to produce an additional interpretation and matches. For additional genealogical analysis the data can also be uploaded to GEDmatch (a third-party web based set of tools that analyzes raw data from the main service providers). Raw data can also be uploaded to services that provide health risk and trait reports using SNP genotypes. These reports may be free or inexpensive, in contrast to reports provided by DTC testing companies, who charge about double the cost of their genealogy-only services. The implications of individual SNP results can be ascertained from raw data results by referring to SNPedia.com.
Identification of Matches
The major component of an autosomal DNA test is matching other individuals. Where the individual being tested has a number of consecutive SNPs in common with a previously tested individual in the company's database, it can be inferred that they share a segment of DNA at that part of their genomes. If the segment is longer than a threshold amount set by the testing company, then these two individuals are considered to be a match. Unlike the identification of base pairs, the data bases against which the new sample is tested, and the algorithms used to determine a match, are proprietary and specific to each company.
The unit for segments of DNA is the
centimorgan (cM). For comparison, a full human genome is about 6500 cM. The shorter the length of a match, the greater are the chances that a match is spurious. An important statistic for subsequent interpretation is the length of the shared DNA (or the percentage of the genome that is shared).
Interpretation of Autosomal matches
Most companies will show the customers how many cMs they share and across how many segments. From the number of cMs and segments, the relationship between the two individuals can be estimated; however, due to the random nature of DNA inheritance, relationship estimates, especially for distant relatives, are only approximate. Some more distant cousins will not match at all. Although information about specific SNPs can be used for some purposes (e.g., suggesting likely eye color), the key information is the percentage of DNA shared by two individuals. This can indicate the closeness of the relationship. However, it does not show the roles of the two individuals, e.g., 50% shared suggests a parent/child relationship, but it does not identify which individual is the parent.
Various advanced techniques and analyses can be done on this data. This includes features such as In-common/Shared Matches, Chromosome Browsers, and Triangulation. This analysis is often required if DNA evidence is being used to prove or disprove a specific relationship.
X-chromosome DNA testing
The X-chromosome SNP results are often included in autosomal DNA tests. Both males and females receive an X-chromosome from their mother, but only females receive a second X-chromosome from their father. The X-chromosome has a special path of inheritance patterns and can be useful in significantly narrowing down possible ancestor lines compared to autosomal DNA. For example, an X-chromosome match with a male can only have come from his maternal side. Like autosomal DNA, X-chromosome DNA undergoes random recombination at each generation (except for father-to-daughter X-chromosomes, which are passed down unchanged). There are specialized inheritance charts which describe the possible patterns of X-chromosome DNA inheritance for males and females.
STRs
Some genealogical companies offer autosomal STRs (short tandem repeats).
These are similar to Y-DNA STRs. The number of STRs offered is limited, and results have been used for personal identification, paternity cases, and inter-population studies.
Law enforcement agencies in the US and Europe use autosomal STR data to identify criminals.
Mitochondrial DNA (mtDNA) testing
The
mitochondrion
A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used ...
is a component of a human cell, and contains its own DNA. Mitochondrial DNA usually has 16,569 base pairs (the number can vary slightly depending on addition or deletion mutations) and is much smaller than the human genome DNA which has 3.2 billion base pairs. Mitochondrial DNA is transmitted from mother to child, as it is contained in the egg cell. Thus, a direct maternal ancestor can be traced using
mtDNA
Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondrion, mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mit ...
. The transmission occurs with relatively rare mutations compared to autosomal DNA. A perfect match found to another person's mtDNA test results indicates shared ancestry of possibly between 1 and 50 generations ago.
More distant matching to a specific haplogroup or subclade may be linked to a common geographic origin.
Test
The mtDNA, by current conventions, is divided into three regions. They are the coding region (00577-16023) and two
Hyper Variable Region
A hypervariable region (HVR) is a location within nuclear DNA or the D-loop of mitochondrial DNA in which base pairs of nucleotides repeat (in the case of nuclear DNA) or have substitutions (in the case of mitochondrial DNA). Changes or repeats in ...
s (HVR1
6024-16569
6 (six) is the natural number following 5 and preceding 7. It is a composite number and the smallest perfect number.
In mathematics
Six is the smallest positive integer which is neither a square number nor a prime number; it is the second small ...
and HVR2
0001-00576
Increment or incremental may refer to:
*Incrementalism, a theory (also used in politics as a synonym for gradualism)
*Increment and decrement operators, the operators ++ and -- in computer programming
*Incremental computing
*Incremental backup, wh ...
.
The two most common mtDNA tests are a sequence of HVR1 and HVR2 and a full sequence of the mitochondria. Generally, testing only the HVRs has limited genealogical use so it is increasingly popular and accessible to have a full sequence. The full mtDNA sequence is only offered by Family Tree DNA among the major testing companies
and is somewhat controversial because the coding region DNA may reveal medical information about the test-taker
Haplogroups

All humans descend in the direct female line from
Mitochondrial Eve, a female who lived probably around 150,000 years ago in Africa.
Different branches of her descendants are different haplogroups. Most mtDNA results include a prediction or exact assertion of one's
mtDNA Haplogroup. Mitochrondial haplogroups were greatly popularized by the book ''
The Seven Daughters of Eve'', which explores mitochondrial DNA.
Understanding mtDNA test results
It is not normal for test results to give a base-by-base list of results. Instead, results are normally compared to the
Cambridge Reference Sequence (CRS), which is the mitochondria of a European who was the first person to have their mtDNA published in 1981 (and revised in 1999). Differences between the CRS and testers are usually very few, thus it is more convenient than listing one's raw results for each base pair.
;Examples:
Note that in HVR1, instead of reporting the base pair exactly, for example 16,111, the 16 is often removed to give in this example 111. The letters refer to one of the four bases (A, T, G, C) that make up DNA.
Y-chromosome (Y-DNA) testing
The Y-chromosome is one of the 23rd pair of human chromosomes. Only males have a Y-chromosome, because women have two X chromosomes in their 23rd pair. A man's
patrilineal ancestry, or male-line ancestry, can be traced using the DNA on his
Y-chromosome (Y-DNA), because the Y-chromosome is transmitted from a father to son nearly unchanged.
A man's test results are compared to another man's results to determine the time frame in which the two individuals shared a
most recent common ancestor, or MRCA, in their direct patrilineal lines. If their test results are very close, they are related within a genealogically useful time frame. A
surname project is where many individuals whose Y-chromosomes match collaborate to find their common ancestry.
Women who wish to determine their direct paternal DNA ancestry can ask their father, brother, paternal uncle, paternal grandfather, or a paternal uncle's son (their cousin) to take a test for them.
There are two types of DNA testing: STRs and SNPs.
STR markers
Most common is
STRs (short tandem repeat). A certain section of DNA is examined for a pattern that repeats (e.g. ATCG). The number of times it repeats is the value of the marker. Typical tests test between 12 and 111 STR markers. STRs mutate fairly frequently. The results of two individuals are then compared to see if there is a match. DNA companies will usually provide an estimate of how closely related two people are, in terms of generations or years, based on the difference between their results.
SNP markers and Haplogroups

A person's
haplogroup can often be inferred from their STR results, but can be proven only with a Y-chromosome SNP test (Y-SNP test).
A
single-nucleotide polymorphism (SNP) is a change to a single nucleotide in a DNA sequence. Typical Y-DNA SNP tests test about 20,000 to 35,000 SNPs. Getting a SNP test allows a much higher resolution than STRs. It can be used to provide additional information about the relationship between two individuals and to confirm haplogroups.
All human men descend in the paternal line from a single man dubbed
Y-chromosomal Adam, who lived probably between 200,000 and 300,000 years ago.
[ "we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192–307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47–52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky."] A 'family tree' can be drawn showing how men today descend from him. Different branches of this tree are different haplogroups. Most haplogroups can be further subdivided multiple times into sub-clades. Some known sub-clades were founded in the last 1000 years, meaning their timeframe approaches the genealogical era (c.1500 onwards).
New sub-clades of haplogroups may be discovered when an individual tests, especially if they are non-European. Most significant of these new discoveries was in 2013 when the
haplogroup A00 was discovered, which required theories about Y-chromosomal Adam to be significantly revised. The haplogroup was discovered when an African-American man tested STRs at FamilyTreeDNA and his results were found to be unusual. SNP testing confirmed that he does not descend patrilineally from the "old" Y-chromosomal Adam and so a much older man became Y-Chromosomal Adam.
Using DNA test results
Ethnicity estimates
Many companies offer a percentage breakdown by ethnicity or region. Generally the world is specified into about 20–25 regions, and the approximate percentage of DNA inherited from each is stated. This is usually done by comparing the frequency of each
Autosomal DNA
An autosome is any chromosome that is not a sex chromosome. The members of an autosome pair in a diploid cell have the same morphology, unlike those in allosomal (sex chromosome) pairs, which may have different structures. The DNA in autosomes ...
marker tested to many population groups.
The reliability of this type of test is dependent on comparative population size, the number of markers tested, the ancestry informative value of the SNPs tested, and the degree of admixture in the person tested. Earlier ethnicity estimates were often wildly inaccurate, but as companies receive more samples over time, ethnicity estimates have become more accurate. Testing companies such as
Ancestry.com will often regularly update their ethnicity estimates, which has caused some controversy from customers as their results update. Usually the results at the continental level are accurate, but more specific assertions of the test may turn out to be incorrect.
Audience
The interest in genealogical DNA tests has been linked to both an increase in curiosity about traditional genealogy and to more general personal origins. Those who test for traditional genealogy often utilize a combination of autosomal, mitochondrial, and Y-Chromosome tests. Those with an interest in personal ethnic origins are more likely to use an autosomal test. However, answering specific questions about the ethnic origins of a particular lineage may be best suited to an mtDNA test or a Y-DNA test.
Maternal origin tests
For recent genealogy, exact matching on the mtDNA full sequence is used to confirm a common ancestor on the direct maternal line between two suspected relatives. Because mtDNA mutations are very rare, a ''nearly'' perfect match is not usually considered relevant to the most recent 1 to 16 generations. In cultures lacking
matrilineal surnames to pass down, neither relative above is likely to have as many generations of ancestors in their matrilineal information table as in the above patrilineal or Y-DNA case: for further information on this difficulty in ''traditional genealogy'', due to lack of ''matrilineal'' surnames (or matrinames), see
Matriname
A matrilineal surname or matrinameSykes, Bryan (2001). ''The Seven Daughters of Eve''. W.W. Norton. ; pp. 291–2. Professor Bryan Sykes uses "matriname", only, and states that women adding their own matriname to men's patriname (or "surname" as ...
.
[Sykes, Bryan (2001). ''The Seven Daughters of Eve''. W. W. Norton. , pp. 291–92. Sykes discusses the difficulty in genealogically tracing a maternal lineage, due to the lack of matrilineal surnames (or matrinames).] However, the foundation of testing is still two suspected descendants of one person. This hypothesize and test DNA pattern is the same one used for autosomal DNA and Y-DNA.
Tests for ethnicity and membership of other groups

As discussed above, autosomal tests usually report the ethnic proportions of the individual. These attempt to measure an individual's mixed geographic heritage by identifying particular markers, called ancestry informative markers or AIM, that are associated with populations of specific geographical areas. Geneticist
Adam Rutherford has written that these tests "don’t necessarily show your geographical origins in the past. They show with whom you have common ancestry today."
The haplogroups determined by Y-DNA and mtDNA tests are often unevenly geographically distributed. Many direct-to-consumer DNA tests described this association to infer the test-taker's ancestral homeland.
Most tests describe haplogroups according to their most frequently associated continent (e.g., a "European haplogroup").
When Leslie Emery and collaborators performed a trial of mtDNA haplogroups as a predictor of continental origin on individuals in the Human Genetic Diversity Panel (HGDP) and 1000 Genomes (1KGP) datasets, they found that only 14 of 23 haplogroups had a success rate above 50% among the HGDP samples, as did "about half" of the haplogroups in the 1KGP.
The authors concluded that, for most people, "mtDNA-haplogroup membership provides limited information about either continental ancestry or continental region of origin."
African ancestry
Y-DNA and mtDNA testing may be able to determine with which peoples in present-day
Africa
Africa is the world's second-largest and second-most populous continent, after Asia in both cases. At about 30.3 million km2 (11.7 million square miles) including adjacent islands, it covers 6% of Earth's total surface area ...
a person shares a direct line of part of his or her ancestry, but patterns of historic migration and historical events cloud the tracing of ancestral groups. Due to joint long histories in the US, approximately 30% of
African American
African Americans (also referred to as Black Americans and Afro-Americans) are an Race and ethnicity in the United States, ethnic group consisting of Americans with partial or total ancestry from sub-Saharan Africa. The term "African American ...
males have a European
Y-Chromosome haplogroup
In human genetics, a human Y-chromosome DNA haplogroup is a haplogroup defined by mutations in the non- recombining portions of DNA from the male-specific Y chromosome (called Y-DNA). Many people within a haplogroup share similar numbers of sh ...
Approximately 58% of African Americans have at least the equivalent of one great-grandparent (13%) of European ancestry. Only about 5% have the equivalent of one great-grandparent of Native American ancestry. By the early 19th century, substantial families of Free Persons of Color had been established in the
Chesapeake Bay
The Chesapeake Bay ( ) is the largest estuary in the United States. The Bay is located in the Mid-Atlantic (United States), Mid-Atlantic region and is primarily separated from the Atlantic Ocean by the Delmarva Peninsula (including the parts: the ...
area who were descended from free people during the colonial period; most of those have been documented as descended from white men and African women (servant, slave or free). Over time various groups married more within mixed-race, black or white communities.
According to authorities like Salas, nearly three-quarters of the ancestors of African Americans taken in
slavery
Slavery and enslavement are both the state and the condition of being a slave—someone forbidden to quit one's service for an enslaver, and who is treated by the enslaver as property. Slavery typically involves slaves being made to perf ...
came from regions of West Africa. The African-American movement to discover and identify with ancestral tribes has burgeoned since DNA testing became available. African Americans usually cannot easily trace their ancestry during the years of slavery through
surname research,
census
A census is the procedure of systematically acquiring, recording and calculating information about the members of a given population. This term is used mostly in connection with national population and housing censuses; other common censuses in ...
and property records, and other traditional means. Genealogical DNA testing may provide a tie to regional African heritage.
United States – Melungeon testing
Melungeons are one of numerous multiracial groups in the United States with origins wrapped in myth. The historical research of Paul Heinegg has documented that many of the Melungeon groups in the Upper South were descended from mixed-race people who were free in colonial Virginia and the result of unions between the Europeans and Africans. They moved to the frontiers of Virginia, North Carolina, Kentucky and Tennessee to gain some freedom from the racial barriers of the plantation areas. Several efforts, including a number of ongoing studies, have examined the genetic makeup of families historically identified as Melungeon. Most results point primarily to a mixture of European and African, which is supported by historical documentation. Some may have Native American heritage as well. Though some companies provide additional Melungeon research materials with Y-DNA and mtDNA tests, any test will allow comparisons with the results of current and past Melungeon DNA studies.
Native American ancestry
The
pre-columbian indigenous people of the United States are called "Native Americans" in American English. Autosomal testing, Y-DNA, and mtDNA testing can be conducted to determine the ancestry of
Native Americans. A mitochondrial Haplogroup determination test based on mutations in
Hypervariable Region 1 and 2 may establish whether a person's direct female line belongs to one of the canonical Native American Haplogroups,
A,
B,
C,
D or
X. The vast majority of Native American individuals belong to one of the five identified
mtDNA
Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondrion, mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mit ...
Haplogroups. Thus, being in one of those groups provides evidence of potential Native American descent. However, DNA ethnicity results cannot be used as a substitute for legal documentation.
Native American tribes have their own requirements for membership, often based on at least one of a person's ancestors having been included on tribal-specific Native American censuses (or final rolls) prepared during
treaty-making, relocation to
reservations or apportionment of land in the late 19th century and early 20th century. One example is the
Dawes Rolls.
Cohanim ancestry
The
Cohanim
Kohen ( he, , ''kōhēn'', , "priest", pl. , ''kōhănīm'', , "priests") is the Hebrew word for " priest", used in reference to the Aaronic priesthood, also called Aaronites or Aaronides. Levitical priests or ''kohanim'' are traditionally be ...
(or Kohanim) is a
patrilineal priestly line of descent in
Judaism
Judaism ( he, ''Yahăḏūṯ'') is an Abrahamic, monotheistic, and ethnic religion comprising the collective religious, cultural, and legal tradition and civilization of the Jewish people. It has its roots as an organized religion in the ...
. According to the
Bible
The Bible (from Koine Greek , , 'the books') is a collection of religious texts or scriptures that are held to be sacred in Christianity, Judaism, Samaritanism, and many other religions. The Bible is an anthologya compilation of texts o ...
, the ancestor of the Cohanim is
Aaron, brother of
Moses
Moses hbo, מֹשֶׁה, Mōše; also known as Moshe or Moshe Rabbeinu (Mishnaic Hebrew: מֹשֶׁה רַבֵּינוּ, ); syr, ܡܘܫܐ, Mūše; ar, موسى, Mūsā; grc, Mωϋσῆς, Mōÿsēs () is considered the most important pro ...
. Many believe that descent from Aaron is verifiable with a Y-DNA test: the first published study in genealogical Y-Chromosome DNA testing found that a significant percentage of Cohens had distinctively similar DNA, rather more so than general Jewish or Middle Eastern populations. These Cohens tended to belong to
Haplogroup J, with Y-STR values clustered unusually closely around a haplotype known as the
Cohen Modal Haplotype
Y-chromosomal Aaron is the name given to the hypothesized most recent common ancestor of the patrilineal Jewish priestly caste known as '' Kohanim'' (singular "Kohen", also spelled "Cohen"). According to the traditional understanding of the He ...
(CMH). This could be consistent with a shared common ancestor, or with the hereditary priesthood having originally been founded from members of a single closely related clan.
Nevertheless, the original studies tested only six Y-STR markers, which is considered a low-resolution test. In response to the low resolution of the original 6-marker CMH, the testing company FTDNA released a 12-marker CMH signature that was more specific to the large closely related group of Cohens in Haplogroup J1.
A further academic study published in 2009 examined more STR markers and identified a more sharply defined SNP haplogroup,
J1e* (now J1c3, also called J-P58*) for the J1 lineage. The research found "that 46.1% of Kohanim carry Y chromosomes belonging to a single paternal lineage (J-P58*) that likely originated in the Near East well before the dispersal of Jewish groups in the Diaspora. Support for a Near Eastern origin of this lineage comes from its high frequency in our sample of
Bedouins, Yemenis (67%), and Jordanians (55%) and its precipitous drop in frequency as one moves away from Saudi Arabia and the Near East (Fig. 4). Moreover, there is a striking contrast between the relatively high frequency of J-58* in Jewish populations (»20%) and Kohanim (»46%) and its vanishingly low frequency in our sample of non-Jewish populations that hosted Jewish diaspora communities outside of the Near East."
Recent phylogenetic research for haplogroup J-M267 placed the "Y-chromosomal Aaron" in a subhaplogroup of J-L862, L147.1 (age estimate 5631-6778yBP yBP): YSC235>PF4847/CTS11741>YSC234>ZS241>ZS227>Z18271 (age estimate 2731yBP).
European testing
Benefits
Genealogical DNA tests have become popular due to the ease of testing at home and their usefulness in supplementing
genealogical research. Genealogical DNA tests allow for an individual to determine with high accuracy whether he or she is related to another person within a certain time frame, or with certainty that he or she is not related. DNA tests are perceived as more scientific, conclusive and expeditious than searching the civil records. However, they are limited by restrictions on lines that may be studied. The civil records are always only as accurate as the individuals having provided or written the information.
Y-DNA testing
A genealogical DNA test is a DNA-based test used in genetic genealogy that looks at specific locations of a person's genome in order to find or verify ancestral genealogical relationships, or (with lower reliability) to estimate the ethnic mixt ...
results are normally stated as probabilities: For example, with the same surname a perfect 37/37 marker test match gives a 95% likelihood of the most recent common ancestor (MRCA) being within 8 generations, while a 111 of 111 marker match gives the same 95% likelihood of the MRCA being within only 5 generations back.
[ftdna.com (kept uptodate). http://www.familytreedna.com/faq/answers/default.aspx?faqid=9#925 "FAQ: ...how should the genetic distance at 111 Y-chromosome STR markers be interpreted?" Retrieved 2012-01-13.]
As presented above in
mtDNA testing
A genealogical DNA test is a DNA-based test used in genetic genealogy that looks at specific locations of a person's genome in order to find or verify ancestral genealogical relationships, or (with lower reliability) to estimate the ethnic mixt ...
, if a perfect match is found, the mtDNA test results can be helpful. In some cases, research according to traditional genealogy methods encounters difficulties due to the lack of regularly recorded matrilineal surname information in many cultures (see
Matrilineal surname).
[
Autosomal DNA combined with genealogical research has been used by adoptees to find their biological parents, has been used to find the name and family of unidentified bodies and by law enforcement agencies to apprehend criminals (for example, the Contra Costa County District Attorney's office used the "open-source" genetic genealogy site GEDmatch to find relatives of the suspect in the Golden State Killer case.). ]The Atlantic
''The Atlantic'' is an American magazine and multi-platform publisher. It features articles in the fields of politics, foreign affairs, business and the economy, culture and the arts, technology, and science.
It was founded in 1857 in Boston, ...
magazine commented in 2018 that "Now, the floodgates are open. ..a small, volunteer-run website, GEDmatch.com, has become ... the de facto DNA and genealogy database for all of law enforcement." Family Tree DNA announced in February 2019 it was allowing the FBI to access its DNA data for cases of murder and rape. However, in May 2019 GEDmatch initiated stricter rules for accessing their autosomal DNA database and Family Tree DNA shut down their Y-DNA database ysearch.org, making it more difficult for law enforcement agencies to solve cases.
Drawbacks
Common concerns about genealogical DNA testing are cost and privacy issues. Some testing companies, such as 23andMe and Ancestry, retain samples and results for their own use without a privacy agreement with subjects.
Autosomal DNA tests can identify relationships but they can be misinterpreted. For example, transplants of stem cell or bone marrow will produce matches with the donor. In addition, identical twins (who have identical DNA) can give unexpected results.
Testing of the Y-DNA lineage from father to son may reveal complications, due to unusual mutations, secret adoptions, and non-paternity events (i.e., that the perceived father in a generation is not the father indicated by written birth records). According to the Ancestry and Ancestry Testing Task Force of the American Society of Human Genetics, autosomal tests cannot detect "large portions" of DNA from distant ancestors because it has not been inherited.
With the increasing popularity of the use of DNA tests for ethnicity tests, uncertainties and errors in ethnicity estimates are a drawback for Genetic genealogy. While ethnicity estimates at the continental level should be accurate (with the possible exception of East Asia and the Americas), sub-continental estimates, especially in Europe, are often inaccurate. Customers may be misinformed about the uncertainties and errors of the estimates.
Some have recommended government or other regulation of ancestry testing to ensure its performance to an agreed standard.
A number of law enforcement agencies took legal action to compel
genetic genealogy companies to release genetic information that could match cold case crime victims or perpetrators. A number of companies fought the requests.
Medical information
Though genealogical DNA tests are not designed mainly for medical purposes, autosomal DNA tests can be used to analyze the probability of hundreds of heritable medical conditions, albeit the result is complex to understand and may confuse a non-expert. 23andMe provides medical and trait information from their genealogical DNA test and for a fee the Promethease
SNPedia (pronounced "snipedia") is a wiki-based bioinformatics web site that serves as a database of single nucleotide polymorphisms (SNPs). Each article on a SNP provides a short description, links to scientific articles and personal genomics w ...
web site analyses genealogical DNA test data from Family Tree DNA, 23andMe, or AncestryDNA for medical information. Promethease, and its research paper crawling database SNPedia, has received criticism for technical complexity and a poorly defined "magnitude" scale that causes misconceptions, confusion and panic among its users.
The testing of full MtDNA and YDNA sequences is still somewhat controversial as it may reveal even more medical information. For example, a correlation exists between a lack of Y-DNA marker DYS464 and infertility
Infertility is the inability of a person, animal or plant to reproduce by natural means. It is usually not the natural state of a healthy adult, except notably among certain eusocial species (mostly haplodiploid insects). It is the normal state ...
, and between mtDNA haplogroup H and protection from sepsis. Certain haplogroups have been linked to longevity in some population groups. The field of linkage disequilibrium, unequal association of genetic disorders with a certain mitochondrial lineage, is in its infancy, but those mitochondrial mutations that have been linked are searchable in the genome database Mitomap. Family Tree DNA's MtFull Sequence test analyses the full MtDNA genome and the National Human Genome Research Institute operates the Genetic And Rare Disease Information Center that can assist consumers in identifying an appropriate screening test and help locate a nearby medical center that offers such a test.
DNA in genealogy software
Some genealogy software programs – such as Family Tree Maker, Legacy Family Tree (Deluxe Edition) and the Swedish program Genney – allow recording DNA marker test results. This allows for tracking of both Y-chromosome and mtDNA tests, and recording results for relatives.
See also
* 23andMe
* Ancestry.com
*Archaeogenetics
Archaeogenetics is the study of ancient DNA using various molecular genetic methods and DNA resources. This form of genetic analysis can be applied to human, animal, and plant specimens. Ancient DNA can be extracted from various fossilized specime ...
*DNA paternity testing
DNA paternity testing is the use of DNA profiles to determine whether an individual is the biological parent of another individual. Paternity testing can be especially important when the rights and duties of the father are in issue and a child ...
* Electropherogram
*Family name
In some cultures, a surname, family name, or last name is the portion of one's personal name that indicates one's family, tribe or community.
Practices vary by culture. The family name may be placed at either the start of a person's full name, ...
(patrilineal surname)
* Family Tree DNA
* Genetic fingerprinting
* Genetic Information Nondiscrimination Act
* Genographic Project (Geno 2.0 Next Generation
The Genographic Project, launched on 13 April 2005 by the National Geographic Society and IBM, was a genetic anthropological study (sales discontinued on 31 May 2019) that aimed to map historical human migrations patterns by collecting and ...
)
* International HapMap Project
* International Society of Genetic Genealogy
* List of DNA tested mummies
* Living DNA
*MyHeritage
MyHeritage is an online genealogy platform with web, mobile, and software products and services, introduced by the Israeli company MyHeritage in 2003. Users of the platform can obtain their family trees, upload and browse through photos, and sear ...
References
Further reading
*
*
*
External links
Y-Haplogroups brief descriptions and regional origins
{{DEFAULTSORT:Genealogical Dna Test
DNA
Genetic genealogy
Genetics techniques
Human population genetics
Kinship and descent