In the
thermodynamics of equilibrium, a state function, function of state, or point function for a
thermodynamic system
A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics.
Thermodynamic systems can be passive and active according to internal processes. According to inter ...
is a
mathematical function
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. ...
relating several
state variables or state quantities (that describe
equilibrium states of a system) that depend only on the current equilibrium
thermodynamic state of the system (e.g. gas, liquid, solid, crystal, or
emulsion
An emulsion is a mixture of two or more liquids that are normally Miscibility, immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloi ...
), not the
path which the system has taken to reach that state. A state function describes equilibrium states of a system, thus also describing the type of system. A state variable is typically a state function so the determination of other state variable values at an equilibrium state also determines the value of the state variable as the state function at that state. The
ideal gas law
The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stat ...
is a good example. In this law, one state variable (e.g., pressure, volume, temperature, or the amount of substance in a gaseous equilibrium system) is a function of other state variables so is regarded as a state function. A state function could also describe the number of a certain type of atoms or molecules in a gaseous, liquid, or solid form in a
heterogeneous or
homogeneous mixture, or the amount of energy required to create such a system or change the system into a different equilibrium state.
Internal energy
The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accoun ...
,
enthalpy
Enthalpy () is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant extern ...
, and
entropy
Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
are examples of state quantities or state functions because they quantitatively describe an equilibrium state of a
thermodynamic system
A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics.
Thermodynamic systems can be passive and active according to internal processes. According to inter ...
, regardless of how the system has arrived in that state. They are expressed by
exact differential
In multivariate calculus, a differential (infinitesimal), differential or differential form is said to be exact or perfect (''exact differential''), as contrasted with an inexact differential, if it is equal to the general differential dQ for som ...
s. In contrast,
mechanical work
In science, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force stre ...
and
heat
In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
are
process quantities or path functions because their values depend on a specific "transition" (or "path") between two equilibrium states that a system has taken to reach the final equilibrium state, being expressed by
inexact differentials. Exchanged heat (in certain discrete amounts) can be associated with changes of state function such as enthalpy. The description of the system heat exchange is done by a state function, and thus enthalpy changes point to an amount of heat. This can also apply to entropy when heat is compared to
temperature
Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
. The description breaks down for quantities exhibiting
hysteresis
Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
.
History
It is likely that the term "functions of state" was used in a loose sense during the 1850s and 1860s by those such as
Rudolf Clausius,
William Rankine,
Peter Tait, and
William Thomson. By the 1870s, the term had acquired a use of its own. In his 1873 paper "Graphical Methods in the Thermodynamics of Fluids",
Willard Gibbs states: "The quantities ''v'', ''p'', ''t'', ''ε'', and ''η'' are determined when the state of the body is given, and it may be permitted to call them ''functions of the state of the body''."
Overview
A thermodynamic system is described by a number of thermodynamic parameters (e.g. temperature,
volume
Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
, or
pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
) which are not necessarily independent. The number of parameters needed to describe the system is the dimension of the
state space
In computer science, a state space is a discrete space representing the set of all possible configurations of a system. It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial ...
of the system (). For example, a
monatomic gas with a fixed number of particles is a simple case of a two-dimensional system (). Any two-dimensional system is uniquely specified by two parameters. Choosing a different pair of parameters, such as pressure and volume instead of pressure and temperature, creates a different coordinate system in two-dimensional thermodynamic state space but is otherwise equivalent. Pressure and temperature can be used to find volume, pressure and volume can be used to find temperature, and temperature and volume can be used to find pressure. An analogous statement holds for
higher-dimensional spaces, as described by the
state postulate.
Generally, a state space is defined by an equation of the form
, where denotes pressure, denotes temperature, denotes volume, and the ellipsis denotes other possible state variables like particle number and entropy . If the state space is two-dimensional as in the above example, it can be visualized as a three-dimensional graph (a surface in three-dimensional space). However, the labels of the axes are not unique (since there are more than three state variables in this case), and only two independent variables are necessary to define the state.
When a system changes state continuously, it traces out a "path" in the state space. The path can be specified by noting the values of the state parameters as the system traces out the path, whether as a function of time or a function of some other external variable. For example, having the pressure and volume as functions of time from time to will specify a path in two-dimensional state space. Any function of time can then be
integrated over the path. For example, to calculate the
work done by the system from time to time , calculate
. In order to calculate the work in the above integral, the functions and must be known at each time over the entire path. In contrast, a state function only depends upon the system parameters' values at the endpoints of the path. For example, the following equation can be used to calculate the work plus the integral of over the path:
:
In the equation,
can be expressed as the
exact differential
In multivariate calculus, a differential (infinitesimal), differential or differential form is said to be exact or perfect (''exact differential''), as contrasted with an inexact differential, if it is equal to the general differential dQ for som ...
of the function . Therefore, the integral can be expressed as the difference in the value of at the end points of the integration. The product is therefore a state function of the system.
The notation will be used for an exact differential. In other words, the integral of will be equal to . The symbol will be reserved for an
inexact differential, which cannot be integrated without full knowledge of the path. For example, will be used to denote an infinitesimal increment of work.
State functions represent quantities or properties of a thermodynamic system, while non-state functions represent a process during which the state functions change. For example, the state function is proportional to the
internal energy
The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accoun ...
of an ideal gas, but the work is the amount of energy transferred as the system performs work. Internal energy is identifiable; it is a particular form of energy. Work is the amount of energy that has changed its form or location.
List of state functions
The following are considered to be state functions in thermodynamics:
*
Mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
*
Energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
()
**
Enthalpy
Enthalpy () is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant extern ...
()
**
Internal energy
The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accoun ...
()
**
Gibbs free energy
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol is a thermodynamic potential that can be used to calculate the maximum amount of Work (thermodynamics), work, other than Work (thermodynamics)#Pressure–v ...
()
**
Helmholtz free energy
In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature ( isothermal). The change in the Helmholtz ene ...
()
**
Exergy ()
*
Entropy
Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
()
*
Pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
()
*
Temperature
Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
()
*
Volume
Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
()
*
Chemical composition
A chemical composition specifies the identity, arrangement, and ratio of the chemical elements making up a compound by way of chemical and atomic bonds.
Chemical formulas can be used to describe the relative amounts of elements present in a com ...
*
Pressure altitude
*
Specific volume () or its reciprocal
density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
()
*
Particle number ()
See also
*
Markov property
*
Conservative vector field
In vector calculus, a conservative vector field is a vector field that is the gradient of some function. A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not chan ...
*
Nonholonomic system
A nonholonomic system in physics and mathematics is a physical system whose state depends on the path taken in order to achieve it. Such a system is described by a set of parameters subject to differential constraints and non-linear constraints, s ...
*
Equation of state
In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most mo ...
*
State variable
Notes
References
*
*
*
External links
*
{{DEFAULTSORT:State Function
Thermodynamic properties
Continuum mechanics