Family Of Subsets
   HOME

TheInfoList



OR:

In
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
and related branches of
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a family (or collection) can mean, depending upon the context, any of the following:
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
,
indexed set In mathematics, a family, or indexed family, is informally a collection of objects, each associated with an index from some index set. For example, a family of real numbers, indexed by the set of integers, is a collection of real numbers, where a ...
,
multiset In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The number of instances given for each element is called the ''multiplicity'' of ...
, or
class Class, Classes, or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used d ...
. A collection F of
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
s of a given
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
S is called a family of subsets of S, or a family of sets over S. More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. Additionally, a family of sets may be defined as a function from a set I, known as the index set, to F, in which case the sets of the family are indexed by members of I. In some contexts, a family of sets may be allowed to contain repeated copies of any given member, and in other contexts it may form a
proper class Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map f ...
. A finite family of subsets of a
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. Th ...
S is also called a ''
hypergraph In mathematics, a hypergraph is a generalization of a Graph (discrete mathematics), graph in which an graph theory, edge can join any number of vertex (graph theory), vertices. In contrast, in an ordinary graph, an edge connects exactly two vert ...
''. The subject of
extremal set theory Extremal combinatorics is a field of combinatorics, which is itself a part of mathematics. Extremal combinatorics studies how large or how small a collection of finite objects (numbers, graphs, vectors, sets, etc.) can be, if it has to satisfy ce ...
concerns the largest and smallest examples of families of sets satisfying certain restrictions.


Examples

The set of all subsets of a given set S is called the
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
of S and is denoted by \wp(S). The
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
\wp(S) of a given set S is a family of sets over S. A subset of S having k elements is called a k-subset of S. The k-subsets S^ of a set S form a family of sets. Let S = \. An example of a family of sets over S (in the
multiset In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The number of instances given for each element is called the ''multiplicity'' of ...
sense) is given by F = \left\, where A_1 = \, A_2 = \, A_3 = \, and A_4 = \. The class \operatorname of all
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
s is a ''large'' family of sets. That is, it is not itself a set but instead a
proper class Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map f ...
.


Properties

Any family of subsets of a set S is itself a subset of the
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
\wp(S) if it has no repeated members. Any family of sets without repetitions is a subclass of the
proper class Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map f ...
of all sets (the
universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
).
Hall's marriage theorem In mathematics, Hall's marriage theorem, proved by , is a theorem with two equivalent formulations. In each case, the theorem gives a necessity and sufficiency, necessary and sufficient condition for an object to exist: * The Combinatorics, combina ...
, due to
Philip Hall Philip Hall FRS (11 April 1904 – 30 December 1982), was an English mathematician. His major work was on group theory, notably on finite groups and solvable groups. Biography He was educated first at Christ's Hospital, where he won the Thom ...
, gives necessary and sufficient conditions for a finite family of non-empty sets (repetitions allowed) to have a
system of distinct representatives In mathematics, particularly in combinatorics, given a family of sets, here called a collection ''C'', a transversal (also called a cross-section) is a set containing exactly one element from each member of the collection. When the sets of the co ...
. If \mathcal is any family of sets then \cup \mathcal := F denotes the union of all sets in \mathcal, where in particular, \cup \varnothing = \varnothing. Any family \mathcal of sets is a family over \cup \mathcal and also a family over any superset of \cup \mathcal.


Related concepts

Certain types of objects from other areas of mathematics are equivalent to families of sets, in that they can be described purely as a collection of sets of objects of some type: * A
hypergraph In mathematics, a hypergraph is a generalization of a Graph (discrete mathematics), graph in which an graph theory, edge can join any number of vertex (graph theory), vertices. In contrast, in an ordinary graph, an edge connects exactly two vert ...
, also called a set system, is formed by a set of vertices together with another set of ''
hyperedges This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges. Symbols A B ...
'', each of which may be an arbitrary set. The hyperedges of a hypergraph form a family of sets, and any family of sets can be interpreted as a hypergraph that has the union of the sets as its vertices. * An
abstract simplicial complex In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely c ...
is a combinatorial abstraction of the notion of a
simplicial complex In mathematics, a simplicial complex is a structured Set (mathematics), set composed of Point (geometry), points, line segments, triangles, and their ''n''-dimensional counterparts, called Simplex, simplices, such that all the faces and intersec ...
, a shape formed by unions of line segments, triangles, tetrahedra, and higher-dimensional
simplices In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
, joined face to face. In an abstract simplicial complex, each simplex is represented simply as the set of its vertices. Any family of finite sets without repetitions in which the subsets of any set in the family also belong to the family forms an abstract simplicial complex. * An
incidence structure In mathematics, an incidence structure is an abstract system consisting of two types of objects and a single relationship between these types of objects. Consider the Point (geometry), points and Line (geometry), lines of the Euclidean plane as t ...
consists of a set of ''points'', a set of ''lines'', and an (arbitrary)
binary relation In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs ...
, called the ''incidence relation'', specifying which points belong to which lines. An incidence structure can be specified by a family of sets (even if two distinct lines contain the same set of points), the sets of points belonging to each line, and any family of sets can be interpreted as an incidence structure in this way. * A binary
block code In coding theory, block codes are a large and important family of Channel coding, error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. Th ...
consists of a set of codewords, each of which is a
string String or strings may refer to: *String (structure), a long flexible structure made from threads twisted together, which is used to tie, bind, or hang other objects Arts, entertainment, and media Films * ''Strings'' (1991 film), a Canadian anim ...
of 0s and 1s, all the same length. When each pair of codewords has large
Hamming distance In information theory, the Hamming distance between two String (computer science), strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number ...
, it can be used as an
error-correcting code In computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The centra ...
. A block code can also be described as a family of sets, by describing each codeword as the set of positions at which it contains a 1. * A
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
consists of a pair (X, \tau) where X is a set (whose elements are called ''points'') and \tau is a on X, which is a family of sets (whose elements are called ''open sets'') over X that contains both the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
\varnothing and X itself, and is closed under arbitrary set unions and finite set intersections.


Covers and topologies

A family of sets is said to a set X if every point of X belongs to some member of the family. A subfamily of a cover of X that is also a cover of X is called a . A family is called a if every point of X lies in only finitely many members of the family. If every point of a cover lies in exactly one member of X, the cover is a partition of X. When X is a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
, a cover whose members are all
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
s is called an . A family is called if each point in the space has a
neighborhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neigh ...
that intersects only finitely many members of the family. A or is a family that is the union of countably many locally finite families. A cover \mathcal is said to another (coarser) cover \mathcal if every member of \mathcal is contained in some member of \mathcal. A is a particular type of refinement.


Special types of set families

A
Sperner family In combinatorics, a Sperner family (or Sperner system; named in honor of Emanuel Sperner), or clutter, is a family ''F'' of subsets of a finite set ''E'' in which none of the sets contains another. Equivalently, a Sperner family is an antichain ...
is a set family in which none of the sets contains any of the others.
Sperner's theorem Sperner's theorem, in discrete mathematics, describes the largest possible families of finite sets none of which contain any other sets in the family. It is one of the central results in extremal set theory. It is named after Emanuel Sperner, wh ...
bounds the maximum size of a Sperner family. A
Helly family In combinatorics, a Helly family of order is a family of Set (mathematics), sets in which every minimal ''subfamily with an empty Intersection (set theory), intersection'' has or fewer sets in it. Equivalently, every finite subfamily such that ...
is a set family such that any minimal subfamily with empty intersection has bounded size.
Helly's theorem Helly's theorem is a basic result in discrete geometry on the intersection of convex sets. It was discovered by Eduard Helly in 1913,. but not published by him until 1923, by which time alternative proofs by and had already appeared. Helly's ...
states that
convex set In geometry, a set of points is convex if it contains every line segment between two points in the set. For example, a solid cube (geometry), cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is n ...
s in
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
s of bounded dimension form Helly families. An
abstract simplicial complex In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely c ...
is a set family F (consisting of finite sets) that is
downward closed In mathematics, an upper set (also called an upward closed set, an upset, or an isotone set in ''X'') of a partially ordered set (X, \leq) is a subset S \subseteq X with the following property: if ''s'' is in ''S'' and if ''x'' in ''X'' is larger ...
; that is, every subset of a set in F is also in F. A
matroid In combinatorics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid Axiomatic system, axiomatically, the most significant being in terms ...
is an abstract simplicial complex with an additional property called the '' augmentation property''. Every
filter Filtration is a physical process that separates solid matter and fluid from a mixture. Filter, filtering, filters or filtration may also refer to: Science and technology Computing * Filter (higher-order function), in functional programming * Fil ...
is a family of sets. A
convexity space In geometry, a set of points is convex if it contains every line segment between two points in the set. For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The ...
is a set family closed under arbitrary intersections and unions of
chains A chain is a serial assembly of connected pieces, called links, typically made of metal, with an overall character similar to that of a rope in that it is flexible and curved in compression but linear, rigid, and load-bearing in tension. A ...
(with respect to the
inclusion relation In mathematics, a set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset ...
). Other examples of set families are
independence system In combinatorial mathematics, an independence system is a pair (V, \mathcal), where is a finite set and is a collection of subsets of (called the independent sets or feasible sets) with the following properties: # The empty set is independent, ...
s,
greedoid In combinatorics, a greedoid is a type of set system. It arises from the notion of the matroid, which was originally introduced by Hassler Whitney, Whitney in 1935 to study planar graphs and was later used by Jack Edmonds, Edmonds to characterize ...
s,
antimatroid In mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. Antimatroids ...
s, and
bornological space In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a ...
s.


See also

* * * * * * * * * * * (or ''Set of sets that do not contain themselves'') * *


Notes


References

* * *


External links

* {{Set theory Basic concepts in set theory