Fanconi anaemia, complementation group A, also known as FAA, FACA and FANCA, is a
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
which in humans is encoded by the ''FANCA''
gene
In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
.
It belongs to the
Fanconi anaemia complementation group (FANC) family of genes of which 12 complementation groups are currently recognized and is hypothesised to operate as a post-replication repair or a
cell cycle checkpoint. FANCA proteins are involved in inter-strand
DNA cross-link repair and in the maintenance of normal
chromosome
A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most import ...
stability that regulates the differentiation of haematopoietic
stem cells
In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can change into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell ...
into mature
blood cells.
Mutations involving the FANCA gene are associated with many somatic and congenital defects, primarily involving phenotypic variations of
Fanconi anaemia,
aplastic anaemia, and forms of
cancer
Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
such as
squamous cell carcinoma
Squamous-cell carcinoma (SCC), also known as epidermoid carcinoma, comprises a number of different types of cancer that begin in squamous cells. These cells form on the surface of the skin, on the lining of hollow organs in the body, and on the ...
and
acute myeloid leukaemia
Acute myeloid leukemia (AML) is a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal cells that build up in the bone marrow and blood and interfere with normal blood cell production. Symptoms may inclu ...
.
Function
The Fanconi anaemia complementation group (FANC) currently includes FANCA,
FANCB,
FANCC, FANCD1 (also called
BRCA2
''BRCA2'' and BRCA2 () are human genes and their protein products, respectively. The official symbol (BRCA2, italic for the gene, nonitalic for the protein) and the official name (originally breast cancer 2; currently BRCA2, DNA repair associate ...
),
FANCD2,
FANCE,
FANCF,
FANCG, and
FANCL. The previously defined group FANCH is the same as FANCA. The members of the Fanconi anaemia complementation group do not share sequence similarity; they are related by their assembly into a common nuclear protein complex. The FANCA gene encodes the protein for complementation group A. Alternative splicing results in multiple transcript variants encoding different isoforms.
Gene and protein
In humans, the gene FANCA is 79 kilobases (kb) in length, and is located on
chromosome 16 (16q24.3). The FANCA protein is composed of 1455
amino acids
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the Proteinogenic amino acid, 22 α-amino acids incorporated into p ...
. Within cells, the major purpose of FANCA belongs to its putative involvement in a multisubunit FA complex composed of FANCA,
FANCB,
FANCC,
FANCE,
FANCF,
FANCG, FANCL/PHF9 and FANCM. In complex with FANCF, FANCG and FANCL, FANCA interacts with HES1. This interaction has been proposed as essential for the stability and nuclear localization of FA core complex proteins. The complex with FANCC and FANCG may also include EIF2AK2 and HSP70.
In cells, FANCA involvement in this ‘FA core complex’ is required for the activation of the
FANCD2 protein to a monoubiquitinated isoform (FANCD2-Ub) in response to
DNA damage, catalysing activation of the FA/BRCA DNA damage-response pathway,
leading to repair.
FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, when tested in an electrophoretic mobility shift
assay
An assay is an investigative (analytic) procedure in laboratory medicine, mining, pharmacology, environmental biology and molecular biology for qualitatively assessing or quantitatively measuring the presence, amount, or functional activity ...
, its affinity for
ssDNA is significantly higher than for
dsDNA. FANCA also binds to RNA with a higher affinity than its DNA counterpart.
FANCA requires a certain number of nucleotides for optimal binding, with the minimum for FANCA recognition being approximately 30 for both DNA and RNA. Yuan et al. (2012) found through affinity testing FANCA with a variety of DNA structures that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA, while the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (i.e. preferencing RNA before ssDNA and dsDNA), indicating that the
nucleic acid-binding domain of FANCA is located primarily at the C terminus, a location where many disease-causing mutations are found.
[
FANCA is ubiquitously expressed at low levels in all cells] with subcellular localisation in primarily nucleus but also cytoplasm
The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
corresponding with its putative caretaker role in DNA damage-response pathways, and FA complex formation. The distribution of proteins in different tissues is not well understood currently. Immunochemical study of mouse tissue indicates that FANCA is present at a higher level in lymphoid
The lymphatic system, or lymphoid system, is an organ system in vertebrates that is part of the immune system and complementary to the circulatory system. It consists of a large network of lymphatic vessels, lymph nodes, lymphoid organs, lympha ...
tissues, the testis
A testicle or testis ( testes) is the gonad in all male bilaterians, including humans, and is Homology (biology), homologous to the ovary in females. Its primary functions are the production of sperm and the secretion of Androgen, androgens, p ...
and the ovary
The ovary () is a gonad in the female reproductive system that produces ova; when released, an ovum travels through the fallopian tube/ oviduct into the uterus. There is an ovary on the left and the right side of the body. The ovaries are end ...
,[ and though the significance of this is unclear, it suggests that the presence of FA proteins might be related to cellular proliferation. For example, in human immortalized lymphoblasts and ]leukaemia
Leukemia ( also spelled leukaemia; pronounced ) is a group of blood cancers that usually begin in the bone marrow and produce high numbers of abnormal blood cells. These blood cells are not fully developed and are called ''blasts'' or '' ...
cells, FA proteins are readily detectable by immunoprecipitation
Immunoprecipitation (IP) is the technique of precipitating a protein antigen out of solution using an antibody that specifically binds to that particular protein. This process can be used to isolate and concentrate a particular protein from a sam ...
.
Clinical significance
Mutations
In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosi ...
in this gene are the most common cause of Fanconi's anaemia.[ Fanconi anaemia is an inherited autosomal recessive disorder, the main features of which are aplastic anaemia in childhood, multiple congenital abnormalities, susceptibility to ]leukemia
Leukemia ( also spelled leukaemia; pronounced ) is a group of blood cancers that usually begin in the bone marrow and produce high numbers of abnormal blood cells. These blood cells are not fully developed and are called ''blasts'' or '' ...
and other cancers, and cellular hypersensitivity to interstrand DNA cross-linking agents.[ Generally cells from Fanconi anaemia patients show a markedly higher frequency of spontaneous chromosomal breakage and hypersensitivity to the clastogenic effect of DNA cross-linking agents such as diepoxybutane (DEB) and mitomycin-C (MMC) when compared to normal cells. The primary diagnostic test for Fanconi anaemia is based on the increased chromosomal breakage seen in afflicted cells after exposure to these agents – the DEB/MMC stress test. Other features of the Fanconi anaemia cell phenotype also include abnormal cell cycle kinetics (prolonged G2 phase), hypersensitivity to ]oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
, increased apoptosis
Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
and accelerated telomere
A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes (see #Sequences, Sequences). Telomeres are a widespread genetic feature most commonly found in eukaryotes. In ...
shortening.[
FANCA mutations are by far the most common cause of Fanconi anaemia, accounting for between 60 and 70% of all cases. FANCA was cloned in 1996] and it is one of the largest FA genes. Hundreds of different mutations
In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosi ...
have been recorded with 30% point mutations, 30% 1-5 base pair microdeletions or microinsertions, and 40% large deletions, removing up to 31 exons
An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term ''exon'' refers to both the DNA sequence within a gene and to the corresponding sequence i ...
from the gene. These large deletions have a high correlation with specific breakpoints and arise as a result of Alu mediated recombination. A highly relevant observation is that different mutations produce Fanconi anaemia phenotypes of varying severity.
Patients homozygous
Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism.
Mos ...
for null-mutations in this gene have an earlier onset of anaemia
Anemia (also spelt anaemia in British English) is a blood disorder in which the blood has a reduced ability to carry oxygen. This can be due to a lower than normal number of red blood cells, a reduction in the amount of hemoglobin availab ...
than those with mutations that produce an altered or incorrect protein. However, as most patients are compound heterozygotes, diagnostic screening for mutations is difficult. Certain founder mutations can also occur in some populations, such as the deletion exon 12-31 mutation, which accounts for 60% of mutations in Afrikaners.
Involvement in FA/BRCA pathway
In cells from Fanconi anaemia patients, FA core complex induction of FANCD2 ubiquitination
Ubiquitin is a small (8.6 kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 19 ...
is not observed, assumably a result from impaired complex formation due to the lack of a working FANCA protein. Ultimately, regardless of specific mutation, it is disruption of this FA/BRCA pathway that results in the adverse cellular and clinical phenotypes
In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology (physical form and structure), its developmental processes, its biochemical and physiological properti ...
common to all FANCA-impaired Fanconi anaemia sufferers. Interactions between BRCA1 and many FANC proteins have been investigated. Amongst known FANC proteins, most evidence points for a direct interaction primarily between FANCA protein and BRCA1. Evidence from yeast two-hybrid analysis, coimmunoprecipitation from ''in vitro'' synthesis, and coimmunoprecipitation from cell extracts shows that the site of interaction is between the terminal amino group of FANCA and the central part of BRCA1, located within amino acids 740–1083.
However, as FANCA and BRCA1
Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the ''BRCA1'' () gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. ''BRCA1'' is a ...
undergo a constitutive interaction, this may not depend solely on detection of actual DNA damage. Instead BRCA1 protein may be more crucial in the detection of double stranded DNA breaks, or an intermediate in interstrand crosslink (ICL) repair, and rather serve to bring some of the many DNA repair proteins it interacts with to the site. One such protein would be FANCA, which in turn may serve as a docking site or anchor point at the site of ICL damage for the FA core complex.[ Other FANC proteins, such as FANCC, FANCE and FANCG are then assembled in this nuclear complex in the presence of FANCA as required for the action of FANCD2. This mechanic is also supported by the protein-protein interactions between BRG1 and both BRCA1 and FANCA, that serve to modulate cell-cycle kinetics alongside this.] Alternatively, BRCA1 might localize FANCA to the site of DNA damage and then release it to initiate complex formation.[ The complex would allow ]ubiquitination
Ubiquitin is a small (8.6 kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 19 ...
of FANCD2, a later functioning protein in the FA path, promoting ICL and DNA repair.
FANCA's emerging putative and clearly integral function within activation the FA core complex also provides an explanation for its particularly high correlation with mutations causing Fanconi anaemia. Whilst many FANC protein mutations account for only 1% of the total observed cases,[ they are also stabilized by FANCA within the complex. For example, FANCA stabilises FANCG within the core complex, and hence mutations in FANCG are compensated for as the complex can still catalyse FANCD2-]ubiquitination
Ubiquitin is a small (8.6 kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 19 ...
further downstream. FANCA upregulation
In biochemistry, in the biological context of organisms' regulation of gene expression and production of gene products, downregulation is the process by which a cell decreases the production and quantities of its cellular components, such as R ...
also increases expression of FANCG in cells, and the fact this transduction is not mutual – FANCG upregulation does not cause increased expression of FANCA – suggests that FANCA is not only the primary stabilizing protein in the core complex, but may act as a natural regulator in patients who would otherwise suffer from mutations in FANC genes other than FANCA or FANCD2.[
]
Participation in haematopoiesis
FANCA is hypothesised to play a crucial role in adult (definitive) haematopoiesis
Haematopoiesis (; ; also hematopoiesis in American English, sometimes h(a)emopoiesis) is the formation of blood cellular components. All cellular blood components are derived from haematopoietic stem cells. In a healthy adult human, roughly ten ...
during embryonic development, and is thought to be expressed in all haematopoietic sites that contribute to the formation of haematopoietic stem cells and progenitor cells
A progenitor cell is a Cell (biology), biological cell that can Cellular differentiation, differentiate into a specific cell type. Stem cell, Stem cells and progenitor cells have this ability in common. However, stem cells are less specified than ...
(HSPCs). Most patients with a mutation develop haematological abnormalities within the first decade of life,[ and continue to decline until developing its most prevalent adverse effect, pancytopenia, potentially leading to death.][ In particular many patients develop megaloblastic anaemia around the age of 7, with this macrocytosis being the first haematological marker.][ Defective in vitro ]haematopoiesis
Haematopoiesis (; ; also hematopoiesis in American English, sometimes h(a)emopoiesis) is the formation of blood cellular components. All cellular blood components are derived from haematopoietic stem cells. In a healthy adult human, roughly ten ...
has been recorded for over two decades resulting from mutated FANCA proteins, in particular developmental defects such as impaired granulomonocytopoiesis due to FANCA mutation.
Studies using clonogenic myeloid
Myeloid tissue, in the bone marrow sense of the word '' myeloid'' ('' myelo-'' + '' -oid''), is tissue of bone marrow, of bone marrow cell lineage, or resembling bone marrow, and myelogenous tissue (''myelo-'' + '' -genous'') is any tissue ...
progenitors (CFU-GM) have also shown that the frequency of CFU-GM in normal bone marrow
Bone marrow is a semi-solid biological tissue, tissue found within the Spongy bone, spongy (also known as cancellous) portions of bones. In birds and mammals, bone marrow is the primary site of new blood cell production (or haematopoiesis). It i ...
increased and their proliferative capacity decreased exponentially with age, with a particularly marked proliferative impairment in Fanconi anaemia afflicted children compared to age-matched healthy controls. As haematopoietic progenitor cell function begins at birth and continues throughout life, it is easily inferred that prolonged incapacitation of FANCA protein production results in total haematopoietic failure in patients.
Potential impact on erythroid development
The three distinct stages of mammalian
A mammal () is a vertebrate animal of the Class (biology), class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three ...
erythroid development are primitive, foetal and adult definitive. Adult, or definitive erythrocytes
Red blood cells (RBCs), referred to as erythrocytes (, with -''cyte'' translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood cel ...
are the most common blood cell type and characteristically most similar across mammalian species. Primitive and foetal erythrocytes however, have markedly different characteristics. These include: they are larger in size (primitive even more so than foetal), circulate during early stages of development with a shorter lifespan, and, in particular, primitive cells are nucleated
The cell nucleus (; : nuclei) is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have no nuclei, and a few others including osteo ...
.
As the reasons for these disparities are not well understood, FANCA may be a gene responsible for instigating these morphological differences when considering its variations in erythrocyte expression. In primitive and foetal erythrocyte precursors, FANCA expression is low, and almost zero during reticulocyte formation. The marginal overall increase in the foetal stage is dwarfed by its sudden increase in expression solely during adult definitive proerythroblast formation. Here, the mean expression increases by 400% compared to foetal and primitive erythrocytes, and covers a huge margin of deviation.[ As FANCA is heavily implicated in controlling cellular proliferation, and often results in patients developing megaloblastic anaemia around age 7,][ a haematological disorder marked physically by proliferation-impaired, oversized erythrocytes, it is possible that the size and proliferative discrepancies between primitive, foetal and adult erythroid lineages may be explained by FANCA expression. As FANCA is also linked to cell-cycling and its progression from G2 phase, the stage impaired in megaloblastic anaemia, its expression in definitive proerythroblast development may be an upstream determinant of erythroid size.
]
Implications in cancer
FANCA mutations have also been implicated in increased risks of cancer
Cancer is a group of diseases involving Cell growth#Disorders, abnormal cell growth with the potential to Invasion (cancer), invade or Metastasis, spread to other parts of the body. These contrast with benign tumors, which do not spread. Po ...
and malignancies.[ For example, patients with homozygous null-mutations in FANCA have a markedly increased susceptibility to ]acute myeloid leukaemia
Acute myeloid leukemia (AML) is a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal cells that build up in the bone marrow and blood and interfere with normal blood cell production. Symptoms may inclu ...
.[ Furthermore, as FANC mutations in general affect ]DNA repair
DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...
throughout the body and are predisposed to affect dynamic cell division
Cell division is the process by which a parent cell (biology), cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukar ...
particularly in bone marrow
Bone marrow is a semi-solid biological tissue, tissue found within the Spongy bone, spongy (also known as cancellous) portions of bones. In birds and mammals, bone marrow is the primary site of new blood cell production (or haematopoiesis). It i ...
, it is unsurprising that patients are more likely to develop myelodysplastic syndromes (MDS) and acute myeloid leukaemia
Acute myeloid leukemia (AML) is a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal cells that build up in the bone marrow and blood and interfere with normal blood cell production. Symptoms may inclu ...
.[
]
Mouse knockout
Knockout mice
A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or " knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are importan ...
have been generated for FANCA.[ However, both single and double knockout murine models are healthy, viable, and do not readily show the phenotypic abnormalities typical of human Fanconi anaemia sufferers, such as haematological failure and increased susceptibility to cancers. Other markers such as ]infertility
In biology, infertility is the inability of a male and female organism to Sexual reproduction, reproduce. It is usually not the natural state of a healthy organism that has reached sexual maturity, so children who have not undergone puberty, whi ...
however still do arise. This can be seen as evidence for a lack of functional redundancy in the FANCA gene-encoded proteins. Murine models instead require induction of typical anaemic phenotypes by elevated dosing with MMC that does not affect wild-type animals, before they can be used experimentally as preclinical models for bone marrow failure and potential stem cell transplant or gene therapies.[
Both female and male mice homozygous for a FANCA mutation show ]hypogonadism
Hypogonadism means diminished functional activity of the human gonad, gonads—the testicles or the ovary, ovaries—that may result in diminished biosynthesis, production of sex hormones. Low androgen (e.g., testosterone) levels are referred t ...
and impaired fertility
Fertility in colloquial terms refers the ability to have offspring. In demographic contexts, fertility refers to the actual production of offspring, rather than the physical capability to reproduce, which is termed fecundity. The fertility rate ...
. Homozygous
Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism.
Mos ...
mutant females exhibit premature reproductive senescence and an increased frequency of ovarian cyst
An ovarian cyst is a fluid-filled sac within the ovary. They usually cause no symptoms, but occasionally they may produce bloating, lower abdominal pain, or lower back pain. The majority of cysts are harmless. If the cyst either #Cyst rupture, br ...
s.
In spermatocyte
Spermatocytes are a type of male gametocyte in animals. They derive from immature germ cells called spermatogonia. They are found in the testis, in a structure known as the seminiferous tubules. There are two types of spermatocytes, primary and s ...
s, the FANCA protein is ordinarily present at a high level during the pachytene stage of meiosis
Meiosis () is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, the sperm or egg cells. It involves two rounds of division that ultimately result in four cells, each with only one c ...
. This is the stage when chromosomes are fully synapsed, and Holliday junctions are formed and then resolved into recombinants. FANCA mutant males exhibit an increased frequency of mispaired meiotic chromosomes, implying a role for FANCA in meiotic recombination. Also apoptosis is increased in the mutant germ cell
A germ cell is any cell that gives rise to the gametes of an organism that reproduces sexually. In many animals, the germ cells originate in the primitive streak and migrate via the gut of an embryo to the developing gonads. There, they unde ...
s. The Fanconi anemia DNA repair pathway appears to play a key role in meiotic recombination and the maintenance of reproductive germ cells.
Loss of FANCA provokes neural progenitor apoptosis
Apoptosis (from ) is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemistry, Biochemical events lead to characteristic cell changes (Morphology (biol ...
during forebrain development, likely related to defective DNA repair. This effect persists in adulthood leading to depletion of the neural stem cell pool with aging. The Fanconi anemia phenotype can be interpreted as a premature aging of stem cells, DNA damages being the driving force of aging. (Also see DNA damage theory of aging
The DNA damage theory of aging proposes that aging is a consequence of unrepaired accumulation of DNA damage (naturally occurring), naturally occurring DNA damage. Damage in this context is a DNA alteration that has an abnormal structure. Although ...
.)
Interactions
FANCA has been shown to interact with:
* BRCA1
Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the ''BRCA1'' () gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. ''BRCA1'' is a ...
,[
* ]CHUK
Inhibitor of nuclear factor kappa-B kinase subunit alpha (IKK-α) also known as IKK1 or conserved helix-loop-helix ubiquitous kinase (CHUK) is a protein kinase that in humans is encoded by the ''CHUK'' gene. IKK-α is part of the IκB kinase c ...
,[
* ERCC4,]
* FANCE,[
* FANCF,]
* FANCG,
* FANCC,
* IKK2
IKK-β also known as inhibitor of nuclear factor kappa-B kinase subunit beta is a protein that in humans is encoded by the ''IKBKB'' (inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta) gene.
Function
IKK-β is an enzy ...
,
* SMARCA4
Transcription activator BRG1 also known as ATP-dependent chromatin remodeler SMARCA4 is a protein that in humans is encoded by the ''SMARCA4'' gene.
Function
The protein encoded by this gene is a member of the SWI/SNF family of proteins and ...
[
* SNX5]
* SPTAN1
Alpha II-spectrin, also known as Spectrin alpha chain, brain is a protein that in humans is encoded by the ''SPTAN1'' gene. Alpha II-spectrin is expressed in a variety of tissues, and is highly expressed in cardiac muscle at sarcomere, Z-disc str ...
and
* HES1
References
{{reflist, 35em