In five-dimensional
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a stericated 5-simplex is a convex
uniform 5-polytope
In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.
The complete set of convex uniform 5-polytopes has not been dete ...
with fourth-order
truncations (
sterication
In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude ver ...
) of the regular
5-simplex
In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°.
The 5-s ...
.
There are six unique sterications of the 5-simplex, including permutations of truncations, cantellations, and runcinations. The simplest stericated 5-simplex is also called an expanded 5-simplex, with the first and last nodes ringed, for being constructible by an
expansion
Expansion may refer to:
Arts, entertainment and media
* ''L'Expansion'', a French monthly business magazine
* ''Expansion'' (album), by American jazz pianist Dave Burrell, released in 2004
* ''Expansions'' (McCoy Tyner album), 1970
* ''Expansio ...
operation applied to the regular 5-simplex. The highest form, the ''steriruncicantitruncated 5-simplex'' is more simply called an
omnitruncated 5-simplex with all of the nodes ringed.
Stericated 5-simplex
A stericated 5-simplex can be constructed by an
expansion
Expansion may refer to:
Arts, entertainment and media
* ''L'Expansion'', a French monthly business magazine
* ''Expansion'' (album), by American jazz pianist Dave Burrell, released in 2004
* ''Expansions'' (McCoy Tyner album), 1970
* ''Expansio ...
operation applied to the regular
5-simplex
In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices, 15 edges, 20 triangle faces, 15 tetrahedral cells, and 6 5-cell facets. It has a dihedral angle of cos−1(), or approximately 78.46°.
The 5-s ...
, and thus is also sometimes called an expanded 5-simplex. It has 30
vertices, 120
edges, 210
faces (120
triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, any three points, when non- colli ...
s and 90
squares
In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90-degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length ad ...
), 180
cells
Cell most often refers to:
* Cell (biology), the functional basic unit of life
Cell may also refer to:
Locations
* Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
(60
tetrahedra
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ...
and 120
triangular prism
In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is ''oblique''. ...
s) and 62
4-face
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; a three-dimensional solid bounded exclusively by faces is a ''polyhedron''.
In more technical treatments of the geometry of polyhedra ...
s (12
5-cell
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is ...
s, 30
tetrahedral prism
In geometry, a tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 6 polyhedral cells: 2 tetrahedra connected by 4 triangular prisms. It has 14 faces: 8 triangular and 6 square. It has 16 edges and 8 vertices.
It is one of 18 ...
s and 20
3-3 duoprism
In the geometry of 4 dimensions, the 3-3 duoprism or triangular duoprism is a four-dimensional convex polytope. It can be constructed as the Cartesian product of two triangles and is the simplest of an infinite family of four-dimensional polytopes ...
s).
Alternate names
* Expanded 5-simplex
* Stericated hexateron
* Small cellated dodecateron (Acronym: scad) (Jonathan Bowers)
Cross-sections
The maximal cross-section of the stericated hexateron with a 4-dimensional hyperplane is a
runcinated 5-cell
In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination (a 3rd order truncation, up to face-planing) of the regular 5-cell.
There are 3 unique degrees of runcinations of the 5-cell, including with pe ...
. This cross-section divides the stericated hexateron into two
pentachoral hypercupolas consisting of 6
5-cell
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is ...
s, 15
tetrahedral prism
In geometry, a tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 6 polyhedral cells: 2 tetrahedra connected by 4 triangular prisms. It has 14 faces: 8 triangular and 6 square. It has 16 edges and 8 vertices.
It is one of 18 ...
s and 10
3-3 duoprism
In the geometry of 4 dimensions, the 3-3 duoprism or triangular duoprism is a four-dimensional convex polytope. It can be constructed as the Cartesian product of two triangles and is the simplest of an infinite family of four-dimensional polytopes ...
s each.
Coordinates
The vertices of the ''stericated 5-simplex'' can be constructed on a
hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its '' ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hype ...
in 6-space as permutations of (0,1,1,1,1,2). This represents the positive
orthant facet
Facets () are flat faces on geometric shapes. The organization of naturally occurring facets was key to early developments in crystallography, since they reflect the underlying symmetry of the crystal structure. Gemstones commonly have facets cu ...
of the
stericated 6-orthoplex
In six-dimensional geometry, a stericated 6-orthoplex is a convex uniform 6-polytope, constructed as a sterication (4th order truncation) of the regular 6-orthoplex.
There are 16 unique sterications for the 6-orthoplex with permutations of trunca ...
.
A second construction in 6-space, from the center of a
rectified 6-orthoplex
In six-dimensional geometry, a rectified 6-orthoplex is a convex uniform 6-polytope, being a rectification of the regular 6-orthoplex.
There are unique 6 degrees of rectifications, the zeroth being the 6-orthoplex, and the 6th and last being t ...
is given by coordinate permutations of:
: (1,-1,0,0,0,0)
The
Cartesian coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured i ...
in 5-space for the normalized vertices of an origin-centered stericated hexateron are:
:
:
:
:
:
:
:
:
Root system
Its 30 vertices represent the root vectors of the
simple Lie group
In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symme ...
A
5. It is also the
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines ...
of the
5-simplex honeycomb.
Images
Steritruncated 5-simplex
Alternate names
* Steritruncated hexateron
* Celliprismated hexateron (Acronym: cappix) (Jonathan Bowers)
Coordinates
The coordinates can be made in 6-space, as 180 permutations of:
: (0,1,1,1,2,3)
This construction exists as one of 64
orthant facets
A facet is a flat surface of a geometric shape, e.g., of a cut gemstone.
Facet may also refer to:
Arts, entertainment, and media
* ''Facets'' (album), an album by Jim Croce
* ''Facets'', a 1980 album by jazz pianist Monty Alexander and his tri ...
of the
steritruncated 6-orthoplex.
Images
Stericantellated 5-simplex
Alternate names
* Stericantellated hexateron
* Cellirhombated dodecateron (Acronym: card) (Jonathan Bowers)
Coordinates
The coordinates can be made in 6-space, as permutations of:
: (0,1,1,2,2,3)
This construction exists as one of 64
orthant facets
A facet is a flat surface of a geometric shape, e.g., of a cut gemstone.
Facet may also refer to:
Arts, entertainment, and media
* ''Facets'' (album), an album by Jim Croce
* ''Facets'', a 1980 album by jazz pianist Monty Alexander and his tri ...
of the
stericantellated 6-orthoplex
In six-dimensional geometry, a stericated 6-orthoplex is a convex uniform 6-polytope, constructed as a sterication (4th order truncation) of the regular 6-orthoplex.
There are 16 unique sterications for the 6-orthoplex with permutations of trun ...
.
Images
Stericantitruncated 5-simplex
Alternate names
* Stericantitruncated hexateron
* Celligreatorhombated hexateron (Acronym: cograx) (Jonathan Bowers)
Coordinates
The coordinates can be made in 6-space, as 360 permutations of:
: (0,1,1,2,3,4)
This construction exists as one of 64
orthant facets
A facet is a flat surface of a geometric shape, e.g., of a cut gemstone.
Facet may also refer to:
Arts, entertainment, and media
* ''Facets'' (album), an album by Jim Croce
* ''Facets'', a 1980 album by jazz pianist Monty Alexander and his tri ...
of the
stericantitruncated 6-orthoplex.
Images
Steriruncitruncated 5-simplex
Alternate names
* Steriruncitruncated hexateron
* Celliprismatotruncated dodecateron (Acronym: captid) (Jonathan Bowers)
Coordinates
The coordinates can be made in 6-space, as 360 permutations of:
: (0,1,2,2,3,4)
This construction exists as one of 64
orthant facets
A facet is a flat surface of a geometric shape, e.g., of a cut gemstone.
Facet may also refer to:
Arts, entertainment, and media
* ''Facets'' (album), an album by Jim Croce
* ''Facets'', a 1980 album by jazz pianist Monty Alexander and his tri ...
of the
steriruncitruncated 6-orthoplex
In six-dimensional geometry, a stericated 6-orthoplex is a convex uniform 6-polytope, constructed as a sterication (4th order truncation) of the regular 6-orthoplex.
There are 16 unique sterications for the 6-orthoplex with permutations of trunc ...
.
Images
Omnitruncated 5-simplex
The omnitruncated 5-simplex has 720
vertices, 1800
edge
Edge or EDGE may refer to:
Technology Computing
* Edge computing, a network load-balancing system
* Edge device, an entry point to a computer network
* Adobe Edge, a graphical development application
* Microsoft Edge, a web browser developed b ...
s, 1560
faces (480
hexagon
In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.
Regular hexagon
A ''regular hexagon'' h ...
s and 1080
squares
In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90-degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length ad ...
), 540
cells
Cell most often refers to:
* Cell (biology), the functional basic unit of life
Cell may also refer to:
Locations
* Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
(360
truncated octahedra
In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagons and 6 squares), 36 ...
, 90
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the on ...
s, and 90
hexagonal prism
In geometry, the hexagonal prism is a prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 faces, 18 edges, and 12 vertices..
Since it has 8 faces, it is an octahedron. However, the term ''octahedron'' is primarily used t ...
s), and 62
4-face
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; a three-dimensional solid bounded exclusively by faces is a ''polyhedron''.
In more technical treatments of the geometry of polyhedra ...
s (12
omnitruncated 5-cells, 30
truncated octahedral prism
In 4-dimensional geometry, a truncated octahedral prism or omnitruncated tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 16 cells (2 truncated octahedra connected by 6 cubes, 8 hexagonal prisms.) It has 64 faces (48 squares ...
s, and 20 6-6
duoprism
In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an -polytope and an -polytope is an -polytope, wher ...
s).
Alternate names
* Steriruncicantitruncated 5-simplex (Full description of
omnitruncation
In geometry, an omnitruncation is an operation applied to a regular polytope (or honeycomb) in a Wythoff construction that creates a maximum number of facets. It is represented in a Coxeter–Dynkin diagram with all nodes ringed.
It is a ''short ...
for 5-polytopes by Johnson)
* Omnitruncated hexateron
* Great cellated dodecateron (Acronym: gocad) (Jonathan Bowers)
[Klitizing, (x3x3x3x3x - gocad)]
Coordinates
The vertices of the ''omnitruncated 5-simplex'' can be most simply constructed on a
hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its '' ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hype ...
in 6-space as permutations of (0,1,2,3,4,5). These coordinates come from the positive
orthant facet
Facets () are flat faces on geometric shapes. The organization of naturally occurring facets was key to early developments in crystallography, since they reflect the underlying symmetry of the crystal structure. Gemstones commonly have facets cu ...
of the
steriruncicantitruncated 6-orthoplex
In six-dimensional geometry, a stericated 6-orthoplex is a convex uniform 6-polytope, constructed as a sterication (4th order truncation) of the regular 6-orthoplex.
There are 16 unique sterications for the 6-orthoplex with permutations of trun ...
, t
0,1,2,3,4, .
Images
Permutohedron
The omnitruncated 5-simplex is the permutohedron of order 6. It is also a
zonotope
In geometry, a zonohedron is a convex polyhedron that is centrally symmetric, every face of which is a polygon that is centrally symmetric (a zonogon). Any zonohedron may equivalently be described as the Minkowski sum of a set of line segments in ...
, the
Minkowski sum
In geometry, the Minkowski sum (also known as dilation) of two sets of position vectors ''A'' and ''B'' in Euclidean space is formed by adding each vector in ''A'' to each vector in ''B'', i.e., the set
: A + B = \.
Analogously, the Minkowsk ...
of six line segments parallel to the six lines through the origin and the six vertices of the 5-simplex.
Related honeycomb
The
omnitruncated 5-simplex honeycomb
In five-dimensional Euclidean geometry, the omnitruncated 5-simplex honeycomb or omnitruncated hexateric honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 5-simplex facets.
The facets of all o ...
is constructed by omnitruncated 5-simplex facets with 3
facets
A facet is a flat surface of a geometric shape, e.g., of a cut gemstone.
Facet may also refer to:
Arts, entertainment, and media
* ''Facets'' (album), an album by Jim Croce
* ''Facets'', a 1980 album by jazz pianist Monty Alexander and his tri ...
around each
ridge
A ridge or a mountain ridge is a geographical feature consisting of a chain of mountains or hills that form a continuous elevated crest for an extended distance. The sides of the ridge slope away from the narrow top on either side. The line ...
. It has
Coxeter-Dynkin diagram of .
Full snub 5-simplex
The full snub 5-simplex or omnisnub 5-simplex, defined as an
alternation of the omnitruncated 5-simplex is not uniform, but it can be given Coxeter diagram and
symmetry +, and constructed from 12
snub 5-cell
In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination (a 3rd order truncation, up to face-planing) of the regular 5-cell.
There are 3 unique degrees of runcinations of the 5-cell, including with pe ...
s, 30
snub tetrahedral antiprisms, 20
3-3 duoantiprisms, and 360 irregular
5-cell
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is ...
s filling the gaps at the deleted vertices.
Related uniform polytopes
These polytopes are a part of 19
uniform 5-polytopes based on the
,3,3,3Coxeter group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
, all shown here in A
5 Coxeter plane
In mathematics, the Coxeter number ''h'' is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter.
Definitions
Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there a ...
orthographic projection
Orthographic projection (also orthogonal projection and analemma) is a means of representing three-dimensional objects in two dimensions. Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal ...
s. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)
Notes
References
*
H.S.M. Coxeter:
** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973
** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'',
ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'',
ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'',
ath. Zeit. 200 (1988) 3-45*
Norman Johnson ''Uniform Polytopes'', Manuscript (1991)
** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D.
* x3o3o3o3x - scad, x3x3o3o3x - cappix, x3o3x3o3x - card, x3x3x3o3x - cograx, x3x3o3x3x - captid, x3x3x3x3x - gocad
External links
*
Polytopes of Various Dimensions
{{Polytopes
5-polytopes