In
thermodynamics
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws o ...
, the entropy of mixing is the increase in the total
entropy
Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodyna ...
when several initially separate systems of different composition, each in a thermodynamic state of internal equilibrium, are mixed without chemical reaction by the
thermodynamic operation of removal of impermeable partition(s) between them, followed by a time for establishment of a new thermodynamic state of internal equilibrium in the new unpartitioned closed system.
In general, the mixing may be constrained to occur under various prescribed conditions. In the customarily prescribed conditions, the materials are each initially at a common temperature and pressure, and the new system may change its volume, while being maintained at that same constant temperature, pressure, and chemical component masses. The volume available for each material to explore is increased, from that of its initially separate compartment, to the total common final volume. The final volume need not be the sum of the initially separate volumes, so that work can be done on or by the new closed system during the process of mixing, as well as heat being transferred to or from the surroundings, because of the maintenance of constant pressure and temperature.
The internal energy of the new closed system is equal to the sum of the internal energies of the initially separate systems. The reference values for the internal energies should be specified in a way that is constrained to make this so, maintaining also that the internal energies are respectively proportional to the masses of the systems.
For concision in this article, the term 'ideal material' is used to refer to either an
ideal gas
An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is ...
(mixture) or an
ideal solution
In chemistry, an ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. The enthalpy of mixing is zero as is the volume change on mixing by definition; the closer to zero ...
.
In the
special case of mixing ideal materials, the final common volume is in fact the sum of the initial separate compartment volumes. There is no heat transfer and no work is done. The entropy of mixing is entirely accounted for by the diffusive expansion of each material into a final volume not initially accessible to it.
In the general case of mixing non-ideal materials, however, the total final common volume may be different from the sum of the separate initial volumes, and there may occur transfer of work or heat, to or from the surroundings; also there may be a departure of the entropy of mixing from that of the corresponding ideal case. That departure is the main reason for interest in entropy of mixing. These energy and entropy variables and their temperature dependences provide valuable information about the properties of the materials.
On a molecular level, the entropy of mixing is of interest because it is a macroscopic variable that provides information about
constitutive molecular properties. In ideal materials, intermolecular forces are the same between every pair of molecular kinds, so that a molecule feels no difference between other molecules of its own kind and of those of the other kind. In non-ideal materials, there may be differences of intermolecular forces or specific molecular effects between different species, even though they are chemically non-reacting. The entropy of mixing provides information about constitutive differences of intermolecular forces or specific molecular effects in the materials.
The statistical concept of randomness is used for statistical mechanical explanation of the entropy of mixing. Mixing of ideal materials is regarded as random at a molecular level, and, correspondingly, mixing of non-ideal materials may be non-random.
Mixing of ideal species at constant temperature and pressure
In ideal species, intermolecular forces are the same between every pair of molecular kinds, so that a molecule "feels" no difference between itself and its molecular neighbors. This is the reference case for examining corresponding mixing of non-ideal species.
For example, two ideal gases, at the same temperature and pressure, are initially separated by a dividing partition.
Upon removal of the dividing partition, they expand into a final common volume (the sum of the two initial volumes), and the entropy of mixing
is given by
:
where
is the
gas constant
The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol or . It is the molar equivalent to the Boltzmann constant, expressed in units of energy per temperature increment p ...
,
the total number of
moles and
the
mole fraction
In chemistry, the mole fraction or molar fraction (''xi'' or ) is defined as unit of the amount of a constituent (expressed in moles), ''ni'', divided by the total amount of all constituents in a mixture (also expressed in moles), ''n''tot. This ...
of component
, which initially occupies volume
. After the removal of the partition, the
moles of component
may explore the combined volume
, which causes an entropy increase equal to
for each component gas.
In this case, the increase in entropy is entirely due to the irreversible processes of expansion of the two gases, and involves no heat or work flow between the system and its surroundings.
Gibbs free energy of mixing
The
Gibbs free energy
In thermodynamics, the Gibbs free energy (or Gibbs energy; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of work (physics), work that may be performed by a closed system, thermodynamically closed system a ...
change
determines whether mixing at constant (absolute) temperature
and pressure
is a
spontaneous process In thermodynamics, a spontaneous process is a process which occurs without any external input to the system. A more technical definition is the time-evolution of a system in which it releases free energy and it moves to a lower, more thermodynamic ...
. This quantity combines two physical effects—the
enthalpy of mixing, which is a measure of the energy change, and the entropy of mixing considered here.
For an
ideal gas
An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is ...
mixture or an
ideal solution
In chemistry, an ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. The enthalpy of mixing is zero as is the volume change on mixing by definition; the closer to zero ...
, there is no enthalpy of mixing (
), so that the Gibbs free energy of mixing is given by the entropy term only:
:
For an ideal solution, the Gibbs free energy of mixing is always negative, meaning that mixing of ideal solutions is always spontaneous. The lowest value is when the mole fraction is 0.5 for a mixture of two components, or 1/n for a mixture of n components.
Solutions and temperature dependence of miscibility
Ideal and regular solutions
The above equation for the entropy of mixing of ideal gases is valid also for certain liquid (or solid) solutions—those formed by completely random mixing so that the components move independently in the total volume. Such random mixing of solutions occurs if the interaction energies between unlike molecules are similar to the average interaction energies between like molecules.
[ Atkins, P.W., de Paula, J. (2006). ''Atkins' Physical Chemistry'', eighth edition, W.H. Freeman, New York, .][K. Denbigh, "The Principles of Chemical Equilibrium" (3rd ed., Cambridge University Press 1971) p.432] The value of the entropy corresponds exactly to random mixing for
ideal solution
In chemistry, an ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. The enthalpy of mixing is zero as is the volume change on mixing by definition; the closer to zero ...
s and for
regular solutions, and approximately so for many real solutions.
[
For binary mixtures the entropy of random mixing can be considered as a function of the mole fraction of one component.
:]