HOME

TheInfoList



OR:

Endocytosis is a cellular process in which substances are brought into the cell. The material to be internalized is surrounded by an area of
cell membrane The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
, which then buds off inside the cell to form a vesicle containing the ingested materials. Endocytosis includes
pinocytosis In cellular biology, pinocytosis, otherwise known as fluid endocytosis and bulk-phase pinocytosis, is a mode of endocytosis in which small molecules dissolved in extracellular fluid are brought into the cell through an invagination of the cell me ...
(cell drinking) and
phagocytosis Phagocytosis () is the process by which a cell (biology), cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs ph ...
(cell eating). It is a form of active transport.


History

The term was proposed by De Duve in 1963.
Phagocytosis Phagocytosis () is the process by which a cell (biology), cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs ph ...
was discovered by
Élie Metchnikoff Ilya Ilyich Mechnikov (; – 15 July 1916), also spelled Élie Metchnikoff, was a zoologist from the Russian Empire of Moldavian noble ancestry and alshereat archive.org best known for his research in immunology (study of immune systems) and ...
in 1882.


Pathways

Endocytosis pathways can be subdivided into four categories: namely,
receptor-mediated endocytosis Receptor-mediated endocytosis (RME), also called clathrin-mediated endocytosis, is a process by which cells absorb metabolites, hormones, proteins – and in some cases viruses – by the inward budding of the plasma membrane (invagination). This ...
(also known as clathrin-mediated endocytosis),
caveolae In biology, caveolae (Latin for "little caves"; singular, caveola), which are a special type of lipid raft, are small (50–100 nanometer) invaginations of the plasma membrane in the cells of many vertebrates. They are the most abundant surface fe ...
,
pinocytosis In cellular biology, pinocytosis, otherwise known as fluid endocytosis and bulk-phase pinocytosis, is a mode of endocytosis in which small molecules dissolved in extracellular fluid are brought into the cell through an invagination of the cell me ...
, and
phagocytosis Phagocytosis () is the process by which a cell (biology), cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs ph ...
. * Clathrin-mediated endocytosis is mediated by the production of small (approx. 100 nm in diameter) vesicles that have a morphologically characteristic coat made up of the
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
ic protein
clathrin Clathrin is a protein that plays a role in the formation of coated vesicles. Clathrin was first isolated by Barbara Pearse in 1976. It forms a triskelion shape composed of three clathrin heavy chains and three light chains. When the triskel ...
. Clathrin-coated vesicles (CCVs) are found in virtually all cells and form domains of the plasma membrane termed clathrin-coated pits. Coated pits can concentrate large extracellular molecules that have different
receptors Receptor may refer to: *Sensory receptor, in physiology, any neurite structure that, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds ...
responsible for the receptor-mediated endocytosis of ligands, e.g. low density lipoprotein,
transferrin Transferrins are glycoproteins found in vertebrates which bind and consequently mediate the transport of iron (Fe) through blood plasma. They are produced in the liver and contain binding sites for two Iron(III), Fe3+ ions. Human transferrin is ...
,
growth factor A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for ...
s,
antibodies An antibody (Ab) or immunoglobulin (Ig) is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as bacteria and viruses, including those that caus ...
and many others. :Study in mammalian cells confirm a reduction in clathrin coat size in an increased tension environment. In addition, it suggests that the two apparently distinct clathrin assembly modes, namely coated pits and coated plaques, observed in experimental investigations might be a consequence of varied tensions in the plasma membrane. *
Caveolae In biology, caveolae (Latin for "little caves"; singular, caveola), which are a special type of lipid raft, are small (50–100 nanometer) invaginations of the plasma membrane in the cells of many vertebrates. They are the most abundant surface fe ...
are the most commonly reported non-clathrin-coated plasma membrane buds, which exist on the surface of many, but not all cell types. They consist of the cholesterol-binding protein
caveolin In molecular biology, caveolins are a family of integral membrane proteins that are the principal components of caveolae membranes and involved in receptor-independent endocytosis. Caveolins may act as scaffolding proteins within caveolar me ...
(Vip21) with a bilayer enriched in
cholesterol Cholesterol is the principal sterol of all higher animals, distributed in body Tissue (biology), tissues, especially the brain and spinal cord, and in Animal fat, animal fats and oils. Cholesterol is biosynthesis, biosynthesized by all anima ...
and
glycolipid Glycolipids () are lipids with a carbohydrate attached by a glycosidic (covalent) bond. Their role is to maintain the stability of the cell membrane and to facilitate cellular recognition, which is crucial to the immune response and in the c ...
s. Caveolae are small (approx. 50 nm in diameter) flask-shape pits in the membrane that resemble the shape of a cave (hence the name caveolae). They can constitute up to a third of the plasma membrane area of the cells of some tissues, being especially abundant in
smooth muscle Smooth muscle is one of the three major types of vertebrate muscle tissue, the others being skeletal and cardiac muscle. It can also be found in invertebrates and is controlled by the autonomic nervous system. It is non- striated, so-called bec ...
, type I
pneumocyte A pulmonary alveolus (; ), also called an air sac or air space, is one of millions of hollow, distensible cup-shaped cavities in the lungs where pulmonary gas exchange takes place. Oxygen is exchanged for carbon dioxide at the blood–air bar ...
s,
fibroblast A fibroblast is a type of cell (biology), biological cell typically with a spindle shape that synthesizes the extracellular matrix and collagen, produces the structural framework (Stroma (tissue), stroma) for animal Tissue (biology), tissues, and ...
s,
adipocyte Adipocytes, also known as lipocytes and fat cells, are the cell (biology), cells that primarily compose adipose tissue, specialized in storing energy as fat. Adipocytes are derived from mesenchymal stem cells which give rise to adipocytes through ...
s, and
endothelial cell The endothelium (: endothelia) is a single layer of squamous endothelial cells that line the interior surface of blood vessels and lymphatic vessels. The endothelium forms an interface between circulating blood or lymph in the lumen and th ...
s. Uptake of extracellular molecules is also believed to be specifically mediated via receptors in caveolae. ** Potocytosis is a form of receptor-mediated endocytosis that uses caveolae vesicles to bring molecules of various sizes into the cell. Unlike most endocytosis that uses caveolae to deliver contents of vesicles to lysosomes or other organelles, material endocytosed via potocytosis is released into the cytosol. *
Pinocytosis In cellular biology, pinocytosis, otherwise known as fluid endocytosis and bulk-phase pinocytosis, is a mode of endocytosis in which small molecules dissolved in extracellular fluid are brought into the cell through an invagination of the cell me ...
, which usually occurs from highly ruffled regions of the plasma membrane, is the invagination of the cell membrane to form a pocket, which then pinches off into the cell to form a vesicle (0.5–5 Î¼m in diameter) filled with a large volume of extracellular fluid and molecules within it (equivalent to ~100 CCVs). The filling of the pocket occurs in a non-specific manner. The vesicle then travels into the
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
and fuses with other vesicles such as endosomes and
lysosomes A lysosome () is a membrane-bound organelle that is found in all mammalian cells, with the exception of red blood cells (erythrocytes). There are normally hundreds of lysosomes in the cytosol, where they function as the cell’s degradation cent ...
. *
Phagocytosis Phagocytosis () is the process by which a cell (biology), cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs ph ...
is the process by which cells bind and internalize particulate matter larger than around 0.75 Î¼m in diameter, such as small-sized dust particles, cell debris,
microorganism A microorganism, or microbe, is an organism of microscopic scale, microscopic size, which may exist in its unicellular organism, single-celled form or as a Colony (biology)#Microbial colonies, colony of cells. The possible existence of unseen ...
s and apoptotic cells. These processes involve the uptake of larger membrane areas than clathrin-mediated endocytosis and
caveolae In biology, caveolae (Latin for "little caves"; singular, caveola), which are a special type of lipid raft, are small (50–100 nanometer) invaginations of the plasma membrane in the cells of many vertebrates. They are the most abundant surface fe ...
pathway. More recent experiments have suggested that these morphological descriptions of endocytic events may be inadequate, and a more appropriate method of classification may be based upon whether particular pathways are dependent on clathrin and
dynamin Dynamin is a GTPase protein responsible for endocytosis in the eukaryotic cell. Dynamin is part of the "dynamin superfamily", which includes classical dynamins, dynamin-like proteins, MX1, Mx proteins, OPA1, MFN1, mitofusins, and Guanylate-bindin ...
. Dynamin-dependent clathrin-independent pathways include FEME, UFE,
ADBE Adobe Inc. ( ), formerly Adobe Systems Incorporated, is an American computer software company based in San Jose, California. It offers a wide range of programs from web design tools, photo manipulation and vector creation, through to video/audi ...
, EGFR-NCE and IL2Rβ uptake. Dynamin-independent clathrin-independent pathways include the CLIC/GEEC pathway (regulated by Graf1), as well as MEND and macropinocytosis. Clathrin-mediated endocytosis is the only pathway dependent on both clathrin and dynamin.


Principal components

The endocytic pathway of mammalian cells consists of distinct membrane compartments, which internalize molecules from the plasma membrane and recycle them back to the surface (as in early endosomes and recycling endosomes), or sort them to degradation (as in late endosomes and lysosomes). The principal components of the endocytic pathway are: * Early
endosome Endosomes are a collection of intracellular sorting organelles in eukaryotic cells. They are parts of the endocytic membrane transport pathway originating from the trans Golgi network. Molecules or ligands internalized from the plasma membra ...
s are the first compartment of the endocytic pathway. Early endosomes are often located in the periphery of the cell, and receive most types of vesicles coming from the cell surface. They have a characteristic tubulo-vesicular structure (vesicles up to 1 Î¼m in diameter with connected tubules of approx. 50 nm diameter) and a mildly acidic pH. They are principally sorting organelles where many endocytosed ligands dissociate from their
receptors Receptor may refer to: *Sensory receptor, in physiology, any neurite structure that, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds ...
in the acid pH of the compartment, and from which many of the receptors recycle to the cell surface (via tubules). It is also the site of sorting into transcytotic pathway to later compartments (like late endosomes or lysosomes) via transvesicular compartments (like multivesicular bodies (MVB) or endosomal carrier vesicles (ECVs)). * Late endosomes receive endocytosed material en route to
lysosome A lysosome () is a membrane-bound organelle that is found in all mammalian cells, with the exception of red blood cells (erythrocytes). There are normally hundreds of lysosomes in the cytosol, where they function as the cell’s degradation cent ...
s, usually from early endosomes in the endocytic pathway, from trans-Golgi network (TGN) in the biosynthetic pathway, and from
phagosome In cell biology, a phagosome is a vesicle formed around a particle engulfed by a phagocyte via phagocytosis. Professional phagocytes include macrophages, neutrophils, and dendritic cells (DCs). A phagosome is formed by the fusion of the cel ...
s in the phagocytic pathway. Late endosomes often contain proteins characteristic of nucleosomes, mitochondria and mRNAs including lysosomal membrane glycoproteins and acid hydrolases. They are acidic (approx. pH 5.5), and are part of the trafficking pathway of mannose-6-phosphate receptors. Late endosomes are thought to mediate a final set of sorting events prior the delivery of material to lysosomes. *
Lysosome A lysosome () is a membrane-bound organelle that is found in all mammalian cells, with the exception of red blood cells (erythrocytes). There are normally hundreds of lysosomes in the cytosol, where they function as the cell’s degradation cent ...
s are the last compartment of the endocytic pathway. Their chief function is to break down cellular waste products, fats, carbohydrates, proteins, and other macromolecules into simple compounds. These are then returned to the cytoplasm as new cell-building materials. To accomplish this, lysosomes use some 40 different types of hydrolytic enzymes, all of which are manufactured in the endoplasmic reticulum, modified in the
Golgi apparatus The Golgi apparatus (), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic Cell (biology), cells. Part of the endomembrane system in the cytoplasm, it protein targeting, packages proteins ...
and function in an acidic environment. The approximate pH of a lysosome is 4.8 and by
electron microscopy An electron microscope is a microscope that uses a beam of electrons as a source of illumination. It uses electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing i ...
(EM) usually appear as large vacuoles (1-2 Î¼m in diameter) containing electron dense material. They have a high content of lysosomal membrane proteins and active lysosomal hydrolases, but no mannose-6-phosphate receptor. They are generally regarded as the principal hydrolytic compartment of the cell. It was recently found that an eisosome serves as a portal of endocytosis in yeast.


Clathrin-mediated

The major route for endocytosis in most cells, and the best-understood, is that mediated by the molecule
clathrin Clathrin is a protein that plays a role in the formation of coated vesicles. Clathrin was first isolated by Barbara Pearse in 1976. It forms a triskelion shape composed of three clathrin heavy chains and three light chains. When the triskel ...
. This large protein assists in the formation of a coated pit on the inner surface of the
plasma membrane The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
of the cell. This pit then buds into the cell to form a coated vesicle in the cytoplasm of the cell. In so doing, it brings into the cell not only a small area of the surface of the cell but also a small volume of fluid from outside the cell. Coats function to deform the donor membrane to produce a vesicle, and they also function in the selection of the vesicle cargo. Coat complexes that have been well characterized so far include coat protein-I (COP-I), COP-II, and clathrin. Clathrin coats are involved in two crucial transport steps: (i) receptor-mediated and fluid-phase endocytosis from the plasma membrane to early endosome and (ii) transport from the TGN to endosomes. In endocytosis, the clathrin coat is assembled on the cytoplasmic face of the plasma membrane, forming pits that invaginate to pinch off (scission) and become free CCVs. In cultured cells, the assembly of a CCV takes ~ 1min, and several hundred to a thousand or more can form every minute. The main scaffold component of clathrin coat is the 190-kD protein called clathrin heavy chain (CHC), which is associated with a 25- kD protein called clathrin light chain (CLC), forming three-legged trimers called triskelions. Vesicles selectively concentrate and exclude certain proteins during formation and are not representative of the membrane as a whole. AP2 adaptors are multisubunit complexes that perform this function at the plasma membrane. The best-understood receptors that are found concentrated in coated vesicles of mammalian cells are the
LDL receptor The low-density lipoprotein receptor (LDL-R) is a mosaic protein of 839 amino acids (after removal of 21-amino acid signal peptide) that mediates the endocytosis of cholesterol-rich low-density lipoprotein (LDL). It is a cell-surface receptor ...
(which removes LDL from circulating blood), the transferrin receptor (which brings ferric ions bound by
transferrin Transferrins are glycoproteins found in vertebrates which bind and consequently mediate the transport of iron (Fe) through blood plasma. They are produced in the liver and contain binding sites for two Iron(III), Fe3+ ions. Human transferrin is ...
into the cell) and certain hormone receptors (such as that for EGF). At any one moment, about 25% of the plasma membrane of a fibroblast is made up of coated pits. As a coated pit has a life of about a minute before it buds into the cell, a fibroblast takes up its surface by this route about once every 50 minutes. Coated vesicles formed from the plasma membrane have a diameter of about 100 nm and a lifetime measured in a few seconds. Once the coat has been shed, the remaining vesicle fuses with endosomes and proceeds down the endocytic pathway. The actual budding-in process, whereby a pit is converted to a vesicle, is carried out by clathrin; Assisted by a set of cytoplasmic proteins, which includes
dynamin Dynamin is a GTPase protein responsible for endocytosis in the eukaryotic cell. Dynamin is part of the "dynamin superfamily", which includes classical dynamins, dynamin-like proteins, MX1, Mx proteins, OPA1, MFN1, mitofusins, and Guanylate-bindin ...
and adaptors such as adaptin. Coated pits and vesicles were first seen in thin sections of tissue in the electron microscope by Thomas F Roth and Keith R. Porter. The importance of them for the clearance of LDL from blood was discovered by Richard G. Anderson, Michael S. Brown and Joseph L. Goldstein in 1977. Coated vesicles were first purified by Barbara Pearse, who discovered the clathrin coat molecule in 1976.


Processes and components

Caveolin proteins like caveolin-1 ( CAV1), caveolin-2 ( CAV2), and caveolin-3 ( CAV3), play significant roles in the caveolar formation process. More specifically, CAV1 and CAV2 are responsible for caveolae formation in non-muscle cells while CAV3 functions in muscle cells. The process starts with CAV1 being synthesized in the ER where it forms detergent-resistant
oligomer In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomers.Quote: ''Oligomer molecule: A molecule of intermediate relativ ...
s. Then, these oligomers travel through the
Golgi complex The Golgi apparatus (), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic Cell (biology), cells. Part of the endomembrane system in the cytoplasm, it protein targeting, packages proteins ...
before arriving at the cell surface to aid in caveolar formation. Caveolae formation is also reversible through disassembly under certain conditions such as increased plasma membrane tension. These certain conditions then depend on the type of tissues that are expressing the caveolar function. For example, not all tissues that have caveolar proteins have a caveolar structure i.e. the blood-brain barrier. Though there are many morphological features conserved among caveolae, the functions of each CAV protein are diverse. One common feature among caveolins is their hydrophobic stretches of potential hairpin structures that are made of α-helices. The insertion of these hairpin-like α-helices forms a caveolae coat which leads to membrane curvature. In addition to insertion, caveolins are also capable of oligomerization which further plays a role in membrane curvature. Recent studies have also discovered that polymerase I, transcript release factor, and serum deprivation protein response also play a role in the assembly of caveolae. Besides caveolae assembly, researchers have also discovered that CAV1 proteins can also influence other endocytic pathways. When CAV1 binds to
Cdc42 Cell division control protein 42 homolog (Cdc42 or CDC42) is a protein that in humans is encoded by the ''CDC42'' gene. Cdc42 is involved in regulation of the cell cycle. It was originally identified in ''S. cerevisiae'' (yeast) as a mediator of ...
, CAV1 inactivates it and regulates Cdc42 activity during membrane trafficking events.


Mechanisms

The process of cell uptake depends on the tilt and chirality of constituent molecules to induce membrane budding. Since such chiral and tilted lipid molecules are likely to be in a "raft" form, researchers suggest that caveolae formation also follows this mechanism since caveolae are also enriched in raft constituents. When caveolin proteins bind to the inner leaflet via
cholesterol Cholesterol is the principal sterol of all higher animals, distributed in body Tissue (biology), tissues, especially the brain and spinal cord, and in Animal fat, animal fats and oils. Cholesterol is biosynthesis, biosynthesized by all anima ...
, the membrane starts to bend, leading to spontaneous curvature. This effect is due to the force distribution generated when the caveolin oligomer binds to the membrane. The force distribution then alters the tension of the membrane which leads to budding and eventually vesicle formation.


Gallery

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is a strain of coronavirus that causes COVID-19, the respiratory illness responsible for the COVID-19 pandemic. The virus previously had the Novel coronavirus, provisional nam ...
binds to the ACE2 receptor of the
epithelial cell Epithelium or epithelial tissue is a thin, continuous, protective layer of Cell (biology), cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial (Mesothelium, mesothelial) tissues line ...
."> Endocytosis 3.jpg, Stage 1 Endocytosis 4.jpg, Stage 2 Endocytosis 5.jpg, Stage 3 Endocytosis 6.webm, Endocytosis animation (1) Endocytosis 7.webm, Endocytosis animation (2)


See also


References


Further reading

*


External links


Endocytosis at biologyreference.com

Endocytosis - researching endocytic mechanisms at endocytosis.org

Clathrin-mediated endocytosis
ASCB Image & Video Library
Types of Endocytosis (Animation)
{{Membrane transport Cellular processes Membrane biology Cell anatomy